Tìm môđun của số phức z thỏa mãn điều kiện z ( 4 - 3 i ) = 2 + z
A. z = 2
B. z = 1 2
C. z = 4
D. z = 3
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Trong các số phức thỏa mãn điều kiện z + 3 i = z + 2 - i Tìm số phức có môđun nhỏ nhất ?
A. z = 1 -2i
B. z = - 1 5 + 2 5 i
C. z = 1 5 - 2 5 i
D. z = -1+2i
Trong các số phức thỏa mãn điều kiện | z + 3 i | = | z + 2 - i | . Tìm số phức có môđun nhỏ nhất?
A. z = 1 - 2 i
B. z = - 1 5 + 2 5 i
C. z = 1 5 - 2 5 i
D. z = -1 + 2i
Trong các số phức thỏa mãn điều kiện z - 2 - 4 i = z - 2 i . Tìm môđun nhỏ nhất của số phức z+2i
A. 5
B. 3 5
C. 3 2
D. 3 + 2
Biết số phức z thỏa mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = | z + 2 | 2 - | z - i | 2 đạt giá tri lớn nhất. Tính môđun của số phức z+i
Trong các số phức z thỏa mãn điều kiện z - 2 - 4 i = z - 2 i .Tìm số phức z có môđun nhỏ nhất
A. z = -2 +2i
B. z = -1 +i
C. z = 3+ 2i
D. z = 2 +2i
Trong các số phức z thỏa mãn điều kiện z - 2 - 4 i = z - 2 i .Tìm số phức z có môđun nhỏ nhất
A. z = -2 +2i
B. z = -1 +i
C. z = 3 +2i
D. z = 2 +2i
Trong các số phức thỏa mãn điều kiện: z - 2 - 4 i = z - 2 i . Tìm số phức z có môđun nhỏ nhất
A. z = 2 +i
B. z = 3 +i
C. z = 2 +2i
D. z = 1 +3i
Trong các số phức z thỏa mãn điều kiện |z – 1 – 2i| = 2, tìm số phức z có môđun nhỏ nhất.
Chọn C.
Gọi z = x + yi và M (x; y) là điểm biểu diễn số phức.
Ta có : |z – 1 – 2i| = 2 hay ( x - 1) 2 + (y - 2)2 = 4
Đường tròn (C): ( x - 1)2 + (y - 2)2 = 4 có tâm I(1; 2). Đường thẳng OI có phương trình y = 2x
Số phức z thỏa mãn điều kiện và có môdun nhỏ nhất khi và chỉ khi điểm biểu diễn số phức đó thuộc đường tròn (C) và gần gốc tọa độ O nhất, điểm đó chỉ là một trong hai giao điểm của đường thẳng OI với (C), khi đó tọa độ của nó thỏa mãn hệ
hoặc
Chọn nên số phức