Với là một số thực dương và hàm số y = x α 4 x 2 α nghịch biến trên khoảng (0; +∞). Khẳng định nào sau đây là đúng?
A. α > 2 2 3
B. α > 1 2 2 3
C. 0 < α < 2 2 3
D. 0 < α < 1 2 2 3
Đường thẳng x = α ( α là số thực dương) cắt đồ thị các hàm số y = f ( x ) = x 1 4 và y = g ( x ) = x 1 5 lần lượt tại hai điểm A và B. Biết rằng tung độ điểm A bé hơn tung độ điểm B. Khẳng định nào sau đây là đúng?
A. 0 < α < 1
B. α > 1
C. 1/5 < α < 4
D. 1/4 < α < 5
Từ giả thiết suy ra f(α) < g(α)
Chọn đáp án A.
Nhận xét. Ở đây ta sử dụng tính chất:
Nếu a > 1 thì a α > a β <=> α > β ;
Nếu 0 < a < 1 thì a α > a β <=> α < β .
Học sinh có thể không áp dụng tính chất trên mà giải tiếp:
Sử dụng bất đẳng thức để viết các mệnh đề sau
a) x là số dương.
b) y là số không âm.
c) Với mọi số thực α, |α| là số không âm.
d) Trung bình cộng của hai số dương a và b không nhỏ hơn trung bình nhân của chúng.
a) x > 0
b) y ≥ 0
c) ∀α ∈ R, |α| ≥ 0
d) ∀a, b > 0,
Cho hàm số y = f(x) có đồ thị như hình vẽ dưới là tham số thực α ∈ 0 ; 1 , khi đó số điểm cực trị nhiều nhất của hàm số y = f x + sin α + 4 cos α bằng:
A. 7
B. 5
C. 9
D. 3
Hình vẽ sau là đồ thị của ba hàm số y = x α , y = x β , y = x γ (với x>0 ) và α , β , γ là các số thực cho trước.
Mệnh đề nào dưới đây đúng?
C. α > β > γ
D. β > γ > α
Đáp án D
Hàm số x α nghịch biến do đó 0 < α < 1 .
Các hàm số x β , x γ là các hàm số đồng biến do đó β , γ > 1 .
Cho x = 100 ⇒ 100 β > 100 γ ⇒ β > γ .
Cho hàm số y= x3-3x2-mx+2 với m là tham số thực. Tìm giá trị của m để đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với đường thẳng d ; x+4y-5=0 một góc α = 45 ° .
A. m= -1/2
B. m= 1/2
C. m=0
D. m= 1
Ta có y’=3x2-6x-m
Để đồ thị hàm số đã cho có hai điểm cực trị khi phương trình y’=0 có hai nghiệm phân biệt ⇔ ∆ ' = 9 + 3 m > 0 ⇔ m > - 3
Ta có
đường thẳng đi qua hai điểm cực trị Avà B là
Đường thẳng d; x+4y-5=0 có một VTPT là n d → = ( 1 ; 4 ) .
Đường thẳng có một VTCP là n ∆ → = ( 2 m 3 + 2 ; 1 )
Ycbt suy ra:
Suy ra
thỏa mãn
Chọn A.
Hình vẽ sau là đồ thị của ba hàm số y = x α , y = x β , y = x γ với điều kiện x > 0 v à α , β , γ là các số thực cho trước. Mệnh đề nào dưới đây đúng?
A. γ > β > α
B. β > α > γ
C. α > β > γ
D. β > γ > α
Đáp án D
Với x > 1 mà lim x α = 0 ⇔ 0 < a < 1 và cũng suy ra β , γ > 1
Với x > 1 , với cùng 1 giá trị x 0 thì x β > x γ ⇒ β > γ .
Hình vẽ sau là đồ thị của ba hàm số y = x α , y = x β , y = x γ với điều kiện x > 0 và α , β , γ là các số thực cho trước. Mệnh đề nào dưới đây đúng?
Cho hàm số y= x3-3x2 .Tìm tất cả các giá trị thực tham số m để đường thẳng đi qua 2 điểm cực trị của đồ thị C tạo với đường thẳng x+ my+ 3=0 một góc α biết cosα= 4/5.
A. m= 2 hoặc m = -2/11.
B. m= -2 hoặc m = -2/11.
C. m= 2 hoặc m = 2/11.
D. m=2
+ Đường thẳng đi qua 2 điểm cực trị của hàm số là 2x+ y=0 có VTPT n 1 → ( 2 ; 1 )
+ Đường thẳng đã cho x+ my+ 3= 0 có VTPT n 2 → ( 1 ; m )
Yêu cầu bài toán
Chọn A
Cho 2 hàm số f ( x ) = x 2 và g ( x ) = x 1 2 . Biết rằng α > 0, f(α) < g(α). Khẳng định nào sau đây là đúng?
A. 0 < α < 1/2
B. 0 < α < 1
C. 1/2 < α < 2
D. α > 1
Cho α là một số thực và hàm số y = 1 x 1 - 2 α α đồng biến trên (0; +∞). Khẳng định nào sau đây là đúng
A. α < 1
B. 0 < α < 1 2
C. 1 2 < α < 1
D. α > 1
Hàm số đồng biến khi và chỉ khi
Chọn đáp án B