Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anhnek
Xem chi tiết
Lê Song Phương
29 tháng 10 2023 lúc 14:09

a) \(10^a+483=b^2\)   (*)

 Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)

 Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.

 (Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)

b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))

Xem chi tiết

các bạn trả lời nhanh mình đang vội

Khách vãng lai đã xóa
Energy
28 tháng 3 2020 lúc 21:47

a) | x + 5 | - ( -17 ) = 20

=> | x + 5 | = 3

=> x + 5 = 3 hoặc x + 5 = -3

=> x = -2 hoặc x = -8

Khách vãng lai đã xóa
✎✰ ๖ۣۜLαɗσηηα ༣✰✍
28 tháng 3 2020 lúc 22:03

a) \(\left|x+5\right|-\left(-17\right)=20\)

\(\left|x-5\right|+17=20\)

\(\left|x-5\right|=3\)

\(\Rightarrow\orbr{\begin{cases}x-5=3\\x-5=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=8\\x=2\end{cases}}}\)

vậy \(x\in\left\{8;2\right\}\)

b) \(\left(x-2\right)\left(y+3\right)=15\)

Ta có bảng:

x-2115-1-15
x3171-13
y+3151-15-1
y12-2-18-4

Vậy..

c) \(A=\left|x-2\right|+\left|y-5\right|-10\)

Ta có: \(\left|x-2\right|\ge0\forall x\inℝ\)

           \(\left|y+5\right|\ge0\forall y\inℝ\)

\(\Rightarrow A=\left|x-2\right|+\left|y-5\right|-10\ge-10\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}x-2=0\\y-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}}\)

Vậy \(x=2;y=5\)khi đạt \(GTNN=-10\)

hok tốt!!

Khách vãng lai đã xóa
phan cao nguyen
Xem chi tiết
Trí Tiên
3 tháng 8 2020 lúc 20:43

Bất đẳng thức cần chứng minh tương đương với \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge12\)

 Áp dụng bất đẳng thức AM-GM ta có  

\(1=a^2+b^2+c^2+2abc\ge4\sqrt[4]{2a^3b^3c^3}\)

\(\Rightarrow abc\le\frac{1}{8};\Rightarrow\text{​​}\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\ge3\sqrt[3]{64}=12\)

suy ra điều phải chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

Khách vãng lai đã xóa
công hạ vy
Xem chi tiết
fan FA
Xem chi tiết
Nguyễn Hưng Phát
30 tháng 1 2019 lúc 20:51

1,\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=\)

\(=10\left(a^2-2ab+b^2\right)+10\left(a^2+b^2\right)\)

\(\ge10\left(a-b\right)^2+5.\left(a+b\right)^2\ge0+5.20^2=2000\)

2,a,\(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)

\(\Leftrightarrow a-2\sqrt{a}+b-2\sqrt{b-1}+c-2\sqrt{c-2}=0\)

\(\Leftrightarrow a-2\sqrt{a}+1+b-1-2\sqrt{b-1}+1+c-2+2\sqrt{c-2}+1=0\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-1\right)^2+\left(\sqrt{c-2}-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

b,sai đề

Phạm Tuấn Đạt
30 tháng 1 2019 lúc 20:53

Xét \(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow10\ge\sqrt{ab}\Leftrightarrow100\ge ab\)

\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=20\left[a^2+2ab+b^2-3ab\right]=20\left(20\right)^2-6ab\)

\(T\ge20.20^2-6.100=7400\)

pham trung thanh
31 tháng 1 2019 lúc 11:10

b. \(1=\left(a+2b\right)^2\ge4.a.2b=8ab\)

\(\Rightarrow ab\le\frac{1}{8}\)

Dấu = xảy ra khi \(a=\frac{1}{2}\);\(b=\frac{1}{8}\)

Nguyễn Thị Diệu Linh
Xem chi tiết
Hạ Tuyết
Xem chi tiết
Ngân Phạm
Xem chi tiết

Bài 4:

\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)

Bài 5:

100< 52x-3 < 59

Đề vầy hả em?

 

Phạm Đình Tân
Xem chi tiết
Bùi Duy Khánh
20 tháng 3 2016 lúc 8:26

Ui thầy giỏi ghê ha! Thán phục! Thán phục????????

Nguyễn Thúy Ngân
17 tháng 9 2020 lúc 21:21

chuẩn

Khách vãng lai đã xóa
Hoàng Thị Ngọc Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2023 lúc 4:45

Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)

\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)

\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)

\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)

Cộng vế:

\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)

\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)