Chứng minh rằng:1028+8 chia hết cho 72.
Chứng minh rằng F= 10 28 + 8 chia hết cho 72
Chứng minh rằng:
a) 10n chia 9 dư 1 ( n e N )
b) 1028 + 8 chia hết cho 72
Chứng minh rằng F = 10 28 + 8 chia hết cho 9
Chứng minh rằng F = 10 28 + 8 chia hết cho 9.
Sơ đồ con đường |
Lời giải chi tiết |
|
Dễ thấy, 10 28 có tổng các chữ số bằng 1. ⇒ F = 10 28 + 8 có tổng các chữ số bằng 9. ⇒ F ⋮ 9 |
CHỨNG TỎ
1028+8 CHIA HẾT CHO 72
Bạn nhầm rồi 1028+8 = 1036 không chia hết cho 9 nhé nên không chia hết cho 72
1 Tìm các chữ số a,b biết
a. 7a5b1 chia hết cho 3 và a- b = 4
b. {4a7 + 1b5} chia hết cho 9 và a- b = 6
c. 62ab4a7 chia hết cho 99
2 Chứng minh rằng H = 1028 + 8 chia hết cho 72
giúp mình với mình tickk cho
bt àm câu a thôi '
7a5b1 \(⋮3\Leftrightarrow\left(7+a+5+b+1\right)⋮3\Leftrightarrow\left(13+a+b\right)⋮3\)
\(\Rightarrow a+b\in\left\{2,5,8,11,14,17\right\}\)
Vì a-b=4 là chẵn\(\Rightarrow a+b\)và
a+b > 4 nên \(a+b\in\left\{8,14\right\}\)
+Nếu a+b=8 a-b=4
thì a=6
b=2
+Nếu a+b=14 a-b=4
thì a=9
b=5
Vậy a=6 và b=2
a=9 và b=5
a. Chứng minh rằng nếu: (ab + cd + eg) chia hết cho 11 thì abcdeg chia hết cho 11
b. Chứng minh rằng: 10^28 + 8 chia hết cho 72
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!
Có gì đâu, câu nào khó cứ hỏi mk nhé, các bn bảo mk vẫn giỏi Toán mà.
1.cho A = 999993^1999 - 555557^1997.chứng minh rằng A chia hết cho 5
2.chứng minh rằng 10^28+8 chia hết cho 72
Chứng tỏ 1028+8 chia hết cho 9
ta có :1028+8=+8=100...00(28 chữ số 0)+8⋮9(vì 1 + 8=9⋮9)
vậy 1028+8⋮9 thỏa mãn
chứng tỏ 1028+8 chia hết cho 18
A = 1028 + 8
A = \(\overline{100...08}\) ( 27 chữ số 0)
Xét tổng các chữ số của A ta có: 1 + 0 x 27 + 8 = 9 ⋮ 9 ⇒A ⋮ 9
A = \(\overline{...8}\) ⋮ 2 ⇒ A \(\in\)BC(2; 9); 2 = 2; 9 = 32; BCNN(2; 9) = 2.32 = 18
⇒ A \(\in\) B(18) hay A ⋮ 18 (đpcm)