Cho các số dương a và b thỏa mãn : a + b = \(a^2\)+\(b^2\) =\(a^3\).Tính \(a^{2012}\).\(b^{2013}\)
Cho các số dương a và b thỏa mãn :a+b=a^2+b^2=a^3+b^3 . Tính a^2012 *b^2013
Ch 2 số dương a , b thỏa mãn : a^2012 + b^2012 = a^2013 + b^2013 = a^2014 + b^2014 . Tính : P = 20a + 11b + 2013
Cho 2 số dương a, b thỏa mãn: a2012 + b2012 = a2013 + b2013 = a2014 + b2014.
Hãy tính M = 20a + 11b + 2013
ta có \(a^{2012}+b^{2012}=a^{2013}+b^{2013}\)
\(\Rightarrow a^{2012}-a^{2013}+b^{2012}_{ }-b^{2013}=0\)
\(\Rightarrow a^{2012}\left(1-a\right)+b^{2012}\left(1-b\right)=0\)\(\left(1\right)\)
tương tự \(a^{2013}+b^{2013}=a^{2014}+b^{2014}\)
\(\Leftrightarrow a^{2013}\left(1-a\right)+b^{2013}\left(1-b\right)=0\)\(\left(2\right)\)
trừ (1) cho (2)
ta có \(\left(a^{2012}-a^{2013}\right)\left(1-a\right)\)\(+\left(b^{2012}-b^{2013}\right)\left(1-b\right)=0\)
\(\Leftrightarrow a^{2012}\left(1-a\right)^2+b^{2012}\left(1-b\right)^2=0\)
mà\(a^{2012}\left(1-a\right)^2\ge0;b^{2012}\left(1-b\right)^2\ge0\)
\(\Rightarrow a=1;b=1\)
\(\Rightarrow M=20\times1+11\times1+2013=2044\)
lay cai dau tru cai thu 2
xong lay cai thu 2 tru cai thu 3
xong lay ket qua dau tim dc tru ket qua sau la tim dc a=b=1
roi thay vao tinh M la xong
Ta có: \(a^{2012}+b^{2012}=a^{2013}+b^{2012}=a^{2014}+b^{2014}\)
\(\Rightarrow a^{2012}+b^{2012}-2\left(a^{2013}+b^{2013}\right)+a^{2014}+b^{2014}=0\)
\(\Rightarrow a^{2012}+b^{2012}-2\left(a^{2013}+b^{2013}\right)+a^{2014}+b^{2014}=0\)
\(\Leftrightarrow\left(a^{1006}-a^{1007}\right)^2+\left(b^{1006}-b^{1007}\right)=0\)
Từ đó ta có 2 TH
\(\hept{\begin{cases}a^{1006}-a^{1007}=0\\b^{1006}-b^{1007}=0\end{cases}\hept{\begin{cases}a=0;a=1\\b=0;b=1\end{cases}}}\)
Vậy P=20.0+11.0+2013=2013
P=20.1+11.0+2013=2033
P=20.0+11.1+2013=2024
Cho các số a,b,c thỏa mãn \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}\)
Tính A=4(a-b)(b-c)-(c-a)2
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}\)
\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)
hay \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k\Rightarrow\hept{\begin{cases}a=2012k\\b=2013k\\c=2014k\end{cases}}\)
A = 4( a - b )( b - c ) - ( c - a )2
= 4( 2012k - 2013k )( 2013k - 2014k ) - ( 2014k - 2012k )2
= 4.( -k ).( -k ) - ( 2k )2
= 4k2 - 4k2 = 0
Cho a, b là các hằng số dương x và y tùy ý thuộc R thỏa mãn
x^2+y^2=1 và x^4/a + y^4/b = 1/a+b
Tính giá trị biểu thức M= x^2012/a^1004 + y^2012/b^1006 theo a và b
Ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)
Dấu = xảy ra khi .... Làm tiếp nhé
ta có: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)=> \(\frac{bx^4+ay^4}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\) (vì x^2 +y^2 =1)
=>\(abx^4+b^2x^4+aby^4+a^2y^4\) = \(ab\left(x^4+2x^2y^2+y^4\right)\)
=>\(abx^4+b^2x^4+aby^4+a^2y^4\) = \(abx^4+2abx^2y^2+aby^4\)
=> \(b^2x^4-2abx^2y^2+a^2y^4=0\)
=>\(\left(bx^2-ay^2\right)^2=0\)=>\(bx^2=ay^2\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
=> \(\frac{x^{2012}}{a^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\) và \(\frac{y^{2012}}{b^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\)
=>\(\frac{x^{2012}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\frac{2}{\left(a+b\right)^{1006}}\)
bài 48 nè xuân:
Kẻ DM và IN //BC (M,N thuộc AC)
ta có: ^ADM =ABC (vì DM//BC)
^AMD=^ACB (vì................)
Mà ^ABC=^ACB( vì tg ABC cân tại A) nên ^AMD=^ADM => tg ADM cân tại A=> AD=AM. mà AD=CE(gt) => AM=CE
ta có: IN//BC , mà DM//BC nên DM//IN. Mặt khác : I là t/đ của DE (gt) => N là t/đ của ME (ĐL Ta-Lét)=> MN=EN
Ta có: AN=AM+MN
CN= CE+EN
Mà AM= CE(cmt) ; MN=EN (cmt) nên AN=CN => N là t/đ của AC
Xét tg ACK có: IN//IK và N là t/đ của AC (cmt) => I là t/đ của AK (ĐL Ta -Lét)
Xét tg ADKE có: I là t/đ của AK (cmt) và I là t/đ của DE (gt)
=> tg ADKE là hbh
cho a,b>0 thỏa mãn a+b=a^3+b^3=a^2+b^2tính a^2012⋅b^2013
Cho các số a,b,c thỏa mãn: a/2012=b/2013=c/2014. Tính giá trị của biểu thức:A=4.(a-b).(b-c).(c-a)
Lời giải:
Đặt $\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k$
$\Rightarrow a=2012k; b=2013k; c=2014k$. Khi đó:
$A=4(a-b)(b-c)(c-a)=4(2012k-2013k)(2013k-2014k)(2014k-2012k)$
$=4(-k)(-k)(2k)=8k^3$
a) Cho a ; b là các số nguyên thỏa mãn ( a2+ b2 ) chia hết cho 3
Chứng minh rằng a và b cùng chia hết cho 3
b) Cho A = 1 + 3 + 32 + 33 + 34 +...+ 32012 và B = 32013 : 2
Tính B -A
a) tự giải
b) Ta có CT dãy số lũy thừa
\(a^0+a^1+a^2+...+a^t=\dfrac{a^{t+1}-a^0}{a-1}\)
Mà Mọi số , phép khai căn mũ 0 = 1 nhưng 0 mũ 0 =1 => tập hợp rỗng => Áp dụng đc CT trên
cho nên Tổng A=\(\dfrac{3^{2012+1}-1}{3-1}=\dfrac{3^{2013}-1}{2}\)
lấy B -A, ta đc
\(\dfrac{1}{2}\)
cm
https://icongchuc.com/cac-dang-bai-toan-lien-quan-tong-day-luy-thua-cung-co-so-38128.html
Cho a , b , c thỏa mãn \(a^2+b^2+c^2=a^3+b^3+c^3=1\) Tính \(P=a^{2012}+b^{2013}+c^{2014}\)
Ta có: \(a^2+b^2+c^2=1\)
\(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{matrix}\right.\)
Ta lại có:
\(a^3+b^3+c^3=a^2+b^2+c^2\)
\(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Vì \(\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\\1-c\ge0\end{matrix}\right.\)
\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu = xảy ra khi: \(\left(a,b,c\right)=\left(1,0,0;0,1,0;0,0,1\right)\)
\(\Rightarrow S=1\)