giá trị lớn nhất của A=\(\left(\frac{-2}{3}+\frac{1}{2}x\right)^2-2,5\). Trình bày cách tính
giá trị lớn nhất của:
\(A=\left(\frac{-2}{3}-\frac{1}{2}x\right)^2-2,5\)
Ta có :
\(\left(\frac{-2}{3}-\frac{1}{2}x\right)^2\ge0\)
\(\left(\frac{-2}{3}-\frac{1}{2}x\right)^2-2,5\ge-2,5\)
\(\Rightarrow Min_A=-2,5\)
\(\Leftrightarrow\left(-\frac{2}{3}-\frac{1}{2}x\right)^2=0\)
\(\Leftrightarrow\frac{1}{2}x=-\frac{2}{3}\)
\(\Rightarrow x=\frac{-2}{3}:\frac{1}{2}=\frac{-2}{3}.2=-\frac{4}{3}\)
Bài này không thể tìm trị lớn nhất
A không xác định được giá trị lớn nhất
bạn xem lại đề đi
Giá trị nhỏ nhất nha
giá trị lớn nhất của: \(A=\left(\frac{-2}{3}+\frac{1}{2}x\right)^2-2,5\)
Có cách giải càng tốt ạ. Cảm ơn
VÌ (-2/3+1/2x)^2 LUÔN >HOẶC = O => (-2/3+1/2x)^2 - 2, 5 LUÔN BÉ HƠN HOẶC BẰNG 2,5 VS MỌI X
=> GTLN CỦA A = 2,5
DẤU = XẢY RA <=> (-2/3+1/2x)^2 = 0
=> -2/3+1/2x=0 => 1/ 2x = 2/3 => x=4/3
VẬY GTLN CỦA A = 2,5 ĐẠT DDC KHI x=4/3
mình giải zậy đúng hay sai không bít đâu nha tùy bạn !!!!!!!!!!!!!!
đề sai rồi.Đề trên không có giá trị lớn nhất
đề đúng là tìm giá trị nhỏ nhất.GTNN=-2,5
1,Giá trị của x thỏa mãn:
\(\frac{3}{4}-\left(x+0,5\right)=-\frac{5}{6}\)
2,Giá trị lớn nhất của:
A=\(\left(-\frac{2}{3}+\frac{1}{2}x\right)^2-2,5\)
3,Số nguyên b lớn nhất:
để x\(=\frac{26}{7+b}\)âm
Câu 1 mình nghĩ nó khá đơn giản rồi, bạn tính ra ngay thôi
Câu 2: Mình nghĩ là tìm min chứ ko phải max
Vì \(\left(-\frac{2}{3}+\frac{1}{2}x\right)^2\ge0\Rightarrow A=\left(-\frac{2}{3}+\frac{1}{2}x\right)^2-2,5\ge2,5\)
\(\Rightarrow A_{min}=2,5\Leftrightarrow\left(-\frac{2}{3}+\frac{1}{2}x\right)^2=0\Leftrightarrow-\frac{2}{3}+\frac{1}{2}x=0\Leftrightarrow\frac{1}{2}x=\frac{2}{3}\Leftrightarrow x=\frac{4}{3}\)
A đạt giá trị nhỏ nhất là 2,5 khi x=4/3
Câu 3:
\(x=\frac{26}{7+b}\) âm khi 7+b âm <=> 7+b<0 <=> b<-7
vì b là số nguyên lớn nhất nên b=-8
1.
a,Tìm giá trị nhỏ nhất của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b, Tìm giá trị lớn nhất của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
2. Cho biểu thức \(E=\frac{3-x}{x-1}\). Tìm các giá trị nguyên của x để
a, E có giá trị nguyên
b, E có giá trị nhỏ nhất
trình bày cách làm nữa nha . làm dc 1 câu cũng dc nha
1.
a,Tìm giá trị nhỏ nhất của biểu thức \(C=\left(x+1\right)^2+\left(y+\frac{1}{3}\right)^2-10\)
b, Tìm giá trị lớn nhất của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
2. Cho biểu thức \(E=\frac{3-x}{x-1}\) . Tìm các giá trị nguyên của x để
a, E có giá trị nguyên
b, E có giá trị nhỏ nhất
trình bày cách làm nữa nha . làm dc 1 câu cũng dc nha
Tính giá trị của biểu thức sau một cách hợp lý:
\(A=\left(1+\frac{1}{1+2}\right).\left(1+\frac{1}{1+2+3}\right).....\left(1+\frac{1}{1+2+3+...+997}\right)\)
LƯU Ý:
- Trình bày đúng cách viết phân số, không dùng "/"
- Trả lời đúng,nhanh mình dùng 5 nick k cho!
Giá trị nhỏ nhất của biểu thức :\(\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)là
Ta có\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+1\right|\ge0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)có GTNN khi \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2-\left|2y+1\right|-2,5\)có GTNN là \(\frac{1}{3}\cdot0+0-2,5=-2,5\)
Vậy GTNN của biểu thức trên là -2,5
Giá trị nhỏ nhất của biểu thức: \(C=\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)
Vì: \(\begin{cases}\frac{1}{3}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+2\right|\ge0\end{cases}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
Vậy GTNN của C là -2,5 khi \(\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
1. cho Q=\(\left(\frac{1}{x+1}+\frac{6x+3}{x^3+1}-\frac{2}{x^2-x+1}\right):\left(x+2\right)....\)
a,Tìm điều kiện xác định
b,Tính giá trị lớn nhất của Q
a) ĐKXĐ : x ≠ -1 ; x ≠ -2
\(Q=\left[\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{6x+3}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right]\times\frac{1}{x+2}\)
\(=\frac{x^2-x+1+6x+3-2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{1}{x+2}\)
\(=\frac{x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x^2-x+1\right)}\)
\(=\frac{x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)\left(x^2-x+1\right)}=\frac{x\left(x+2\right)+\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+2\right)\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^2-x+1}\)
b) Ta có : x2 - x + 1 = ( x2 - x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4 ≥ 3/4 ∀ x
hay x2 - x + 1 ≥ 3/4 ∀ x
=> \(\frac{1}{x^2-x+1}\le\frac{4}{3}\)hay Q ≤ 4/3 ∀ x
Dấu "=" xảy ra <=> x = 1/2(tm) . Vậy MaxQ = 4/3