Nêu định nghĩa và các phương pháp tính nguyên hàm.
Nêu định nghĩa và các phương pháp tính nguyên hàm ?
Ta biết rằng nếu ∫f(x)dx=F(x)+C thì ∫f(t)dt=F(t)+C.
Từ đó ta có phương pháp để tìm nguyên hàm của những hàm số dạng g(x)=f(u(x))u′(x) bằng cách đặt t=u(x).
Nội dung phương pháp đổi biến số tính: ∫g(x)dx=∫f(u(x))u′(x)dx
Đặt t=u(x)⇒dt=u′(x)dx (lấy đạo hàm hai vế)
⇒∫g(x)dx=∫f(t)dt=F(t)+C
Ví dụ 1: Tìm nguyên hàm của hàm số f(x)=sin3xcosx
Phân tích: Ta thấy f(x)=sin3xcosx=(sinx)3(sinx)′ nên ta có thể đặt t=sinx.
Giải
t=sinx⇒dt=cosxdx
⇒∫sin3xcosxdx=∫t3dt=t44+C=sin4x4+C (C∈R)
Ví dụ 2: Tính ∫xx2+1−−−−−√dx
Phân tích: xx2+1−−−−−√=(x2+1)12122x=12(x2+1)12(x2+1)′
Giải
Đặt t=x2+1⇒dt=2xdx
∫xx2+1−−−−−√dx=∫(x2+1)12122xdx=12∫t12dt=t323+C
=(x2+1)323+C=(x2+1)x2+1√3+C (C∈R)
Lưu ý: Ta có thể giải ví dụ 2 như sau:
t=x2+1−−−−−√⇒t2=x2+1⇒2tdt=2xdx⇒tdt=xdx
⇒∫xx2+1−−−−−√dx=∫x2+1−−−−−√.xdx=∫t.tdt=∫t2dt
=t33+C=(x2+1√)33+C=(x2+1)x2+1√3+C
Nguyên hàm của một số hàm số hợp đơn giản1) ∫kdx=kx+C
2) ∫(ax+b)αdx=1a(ax+b)α+1α+1+C(α≠1)
3) ∫dxax+b=1aln|ax+b|+C(x≠0)
4) ∫eax+bdx=1aeax+b+C
5) ∫cos(ax+b)dx=1asin(ax+b)+C
6) ∫sin(ax+b)dx=−1acos(ax+b)+C
7) ∫1cos2(ax+b)dx=1atan(ax+b)+C
8) ∫1sin2(ax+b)dx=−1acot(ax+b)+C . Định nghĩa
VÍ DỤ 1. Cho {F(x)=x3f(x)=3x2
VÍ DỤ 2. Cho {F(x)=cosxf(x)=−sinx
Ta thấy ở hai ví dụ trên đều có F’(x) = f(x). Ta gọi F(x) là một nguyên hàm của f(x). Vì với là một hằng số bất kỳ, ta có (F(x) + C)’ = F’(x) = f(x) nên nếu F(x) là nguyên hàm của f(x) thì F(x) + C cũng là một nguyên hàm của f(x). Ta gọi F(x) + C, ( C là hằng số) là Họ nguyên hàm của f(x).
Ký hiệu: ∫f(x)dx=F(x)+C
VÍ DỤ:
∫x4dx=15x5+C;∫cosxdx=sinx+C
a) Phát biểu định nghĩa nguyên hàm của hàm số \(f\left(x\right)\) trên một khoảng
b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa
Nêu định nghĩa và các phương pháp tính tích phân.
• Định nghĩa
Cho hàm số y = f(x) liên tục trên [a; b] , F(x) là một nguyên hàm của f(x) trên [a; b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x)
• Phương pháp tính tích phân
a) Đổi biến số:
Định lí 1: Cho hàm số f(x) liên tục trên [a; b]. Giả sử hàm số x = φ(t) có đạo hàm liên tục trên đoạn [ α;β] sao cho φ(α) = a; φ(β) = βvà a ≤ φ(t) ≤ b với mọi t ∈ [α;β]. Khi đó:
b) Tích phân từng phần
Nếu u = u(x) và v = v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a; b] thì:
Nêu định nghĩa các phương pháp tính tích phân ?
Bài toán: Tính tích phân dạng: I=∫abf(u(x))(u(x))′dx
Phương pháp:
Đặt t=u(x)⇒dt=u′(x)dx
Đổi cận:
⇒I=∫u(a)u(b)f(t)dt
Ví dụ 1: Tính các tích phân sau:
a) I=∫01ex2+1xdx
Phân tích: Ta thấy có thể viết lại: I=∫01ex2+1xdx=∫01ex2+112.2xdx=12∫01ex2+1.2xdx
Trong đó 2x là đạo hàm của x2+1 nên ta có thể đặt t=x2+1.
Giải
Đặt t=x2+1⇒dt=2xdx
Đổi cận:
⇒I=12∫12etdt=12et∣∣∣21=12(e2−e)
b) J=∫01x3x2+1−−−−−√dx
Đặt t=x2+1−−−−−√⇒t2=x2+1⇒x2=t2−1⇒xdx=tdt
Đổi cận:
⇒J=∫01x2.x2+1−−−−−√.xdx=∫12√(t2−1).t.tdt=∫12√(t4−t2)dt
=(t55−t33)∣∣∣2–√1=22√+215
Một số bài tập áp dụng
1) J1 = ∫12xex2dx 2) J2 = ∫1e1+lnx√xdx
3) J3 = ∫01x3(x4−1)5dx 4) J4 = ∫024−x2−−−−−√.xdx
5) J5 = ∫0π/2cosx(1+sinx)4dx
Phương pháp đổi biến loại 2Trong một số trường hợp đặt biệt, ta sẽ đổi biến bằng cách đặt x=u(t) để chuyển từ biến x về biến t. Một số trường hợp mà ta thường gặp có thể áp dụng phương pháp này:
1) Hàm số có chứa a2−x2−−−−−−√: đặt x=|a|sint với (−π2≤t≤π2) hoặc x=|a|cost với (0≤t≤π).
2) Hàm số có chứa x2−a2−−−−−−√: đặt x=|a|sint với (−π2≤t≤π2;t≠0) hoặc x=|a|cost với (0≤t≤π;t≠π2).
3) Hàm số có chứa a2+x2: đặt x=|a|tant với (−π2≤t≤π2) hoặc x=|a|cott với (0≤t≤π).
Ví dụ 3: Tình các tích phân sau:
a) I=∫024−x2−−−−−√dx
Giải
Đặt x=2sint (−π2≤t≤π2)
⇒dx=2costdt
Đổi cận:
⇒I=∫0π24−4sin2t−−−−−−−−√.2costdt=∫0π24(1−sin2t)−−−−−−−−−−√.2costdt
=∫0π24cos2t−−−−−√.2costdt=∫0π24cos2tdt=∫0π22(1+cos2t)dt
=2(t+12sin2t)∣∣∣π20=π
b) J=∫01x1+x2dx
Giải
Đặt x=tant⇒dx=1cos2tdt (−π2≤t≤π2)
Đổi cận:
⇒J=∫0π4tant1+tan2t(1+tan2t)dt=∫0π4tantdt=∫0π4sintcostdt
=−∫0π4(cost)′costdt=−ln(cost)∣∣∣π40=−ln2√2
Một số bài tập áp dụng:
1) ∫01dx1+x2 2) ∫02√2−x2−−−−−√dx 3) ∫2√2dxxx2−1√
4) ∫123√2dx1−x2√ 5) ∫13√9+3x2√dxx2
Định nghĩa : Cho f(x) là một hàm số liên tục trên đoạn [a; b] và giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a; b]. Khi đó hiệu F(b)−F(a) được gọi là tích phân từ a đến b của hàm số f(x).
Các phương pháp giải tích phân :
PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN
Cách đặt: Nhất lốc, nhì đa, tam lượng, tứ mũ (hàm logarit, hàm đa thức, hàm lượng giác, hàm mũ)
Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa.
+ Phương pháp nguyên hàm từng phần:
Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì:
∫u(x).v’(x)dx = u(x).v(x) - ∫v(x).u’(x)dx
Hay viết gọn: ∫udv = uv - ∫vdv.
Câu 1: Em hãy nêu các lệnh định dạng dữ liệu trên bảng tính Excel?
Câu 2: Em hãy nêu cú pháp nhập hàm trong bảng tính Excel?
Câu 3: Em hãy nêu tên và công dụng các hàm đã học trong bảng tính Excel bảng tính Excel.
Tính các nguyên hàm sau bằng phương pháp đổi biến số:
Nêu định nghĩa các hàm số lượng giác. Chỉ rõ tập xác định và tập giá trị của từng hàm số đó.
a. Định nghĩa 1 : (Hàm số sin): Quy tắc tương ứng với mỗi số thực x với số thực sinx.
sin: R -> R
x -> y = sinx.
Hàm số y = sinx có tập xác định là R, tập giá trị là đoạn [-1;1].
b.Định nghĩa 2 : (Hàm số cosin): Quy tắc tương ứng với mỗi số thực x với số thực cosx.
cos : R -> R
x -> y = cosx.
Hàm số y = cosx có tập xác định là R, tập giá trị là đoạn [-1;1]
c. Định nghĩa 3: (Hàm số tang): Hàm số tang là hàm số được xác định bởi công thức
tan : D -> R
x -> y = tanx.
Hàm số y = tanx có tập xác định:
Tập giá trị của hàm số y = tanx là R.
d. Định nghĩa 4 : (Hàm số cotang): là hàm số được xác định bởi công thức
cot : D -> R
x -> y = cotx.
Hàm số y = cotx có tập xác định D = {x ∈ R \ x ≠ kπ, k ∈ Z}. Tập giá trị của hàm số y = cotx là tập R.
Hãy nêu các phương pháp cho một hàm số và ví dụ minh họa
Hàm số cho bằng bảng
Ví dụ:
x | 0 | 1 | 2 | 3 | 4 |
y | 1 | 3 | 5 | 7 | 9 |
- Hàm số cho bằng công thức:
Ví dụ: