Tìm GTNN của biểu thức S biết:
S=x^2+5y^2+4xy-6x-16y+2031giúp mik với:(Tìm GTNN của biểu thức sau:
M=2x^2+9y^2-6xy-6x-12y+2028
N=x^2-4xy+5y^2+10x-22y+28
Giúp mk với
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(M=2x^2+9y^2-6xy-6x-12y+2028=\left(x+2\right)^2-6y\left(x+2\right)+9y^2+\left(x-5\right)^2+1999=\left(x+2-3y\right)^2+\left(x-5\right)^2+2019\ge1999\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{7}{3}\end{matrix}\right.\)
\(N=x^2-4xy+5y^2+10x-22y+28=\left(x+5\right)^2-4y\left(x+5\right)+4y^2+\left(y-1\right)^2+2=\left(x+5-2y\right)^2+\left(y-1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
cho x,y là hai số thực tùy ý , tìm giá trị nhỏ nhất của biểu thức sau
\(P=x^2+5y^2+4xy+6x+16y+32\)
Có P = x2 + 5y2 + 4xy + 6x + 16y + 32
= [(x2 + 4xy + 4y2) + 6x + 12y + 9] + (y2 + 4y + 22) + 19
= [(x + 2y)2 + 2(x + 2y).3 + 32 ] + (y + 2)2 + 19
= (x + 2y + 3)2 + (y + 2)2 + 19
Thấy (x + 2y + 3)2 ≥ 0 với mọi x; y
(y + 2)2 ≥ 0 với mọi y
=> (x + 2y + 3)2 + (y + 2)2 ≥ 0 với mọi x; y
=> (x + 2y + 3)2 + (y + 2)2 + 19 ≥ 19 với mọi x; y
=> P ≥ 19 với mọi x; y
Dấu "=" xảy ra khi x + 2y + 3 = 0 và y + 2 = 0
Bn tự giải tiếp nha, mk ko biết có nhầm chỗ nào ko nhưng cách lm như vậy đó
Tìm GTNN hoặc GTLN của biểu thức
A=\(x^2-4xy+5y^2+10x-22y+2016\)
B=\(10x^2+y^2-6xy-10x+2y-2\)
C=\(2x^2+3y^2+3xy+5x-3y+4\)
D=\(x^2+5y^2+3z^2-4xy+2yz-2xz+6x-16y-20z+41\)
tìm GTNN của đa thức N=x^2+5y^2-4xy+6x-14y+15
pâppapapapapapakgfvergyeurfndsghohdgrkejggidgodgniirh3246457934jjkxvxkvsefsvfdscvxvf
Tìm GTNN của biểu thức sau x^2-4xy-3y-1/2 5y^2
tìm GTNN của biểu thức x^2+5y^2+9z^2-4xy-6yz+12
\(x^2+5y^2+9z^2-4xy-6yz+12\)
\(=\left(x^2-4xy+4y^2\right)+\left(y^2-6yz+9z^2\right)+12\)
\(=\left(x-2y\right)^2+\left(y-3z\right)^2+12\ge12\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=3z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=6z\\y=3z\end{cases}}\)
Cho X và Y là 2 số thực tuỳ ý , tìm giá trị nhỏ nhất của biểu thức sau :
A= x2+5y2+4xy+6x+16y+32
Lời giải:
$A=(x^2+4y^2+4xy)+y^2+6x+16y+32$
$=(x+2y)^2+6(x+2y)+(y^2+4y)+32$
$=(x+2y)^2+6(x+2y)+9+(y^2+4y+4)+19$
$=(x+2y+3)^2+(y+2)^2+19\geq 0+0+19=19$
Vậy $A_{\min}=19$. Giá trị này đạt tại $x+2y+3=y+2=0$
$\Leftrightarrow y=-2; x=1$
1) Tìm GTNN của biểu thức:
a)F=x^2-4x+y^2-8y+6
b)G=x^2-4xy+5y^2+10x-22y+28
Mik đag cần gấp mog các bn giúp đỡ!
a,<=> x2-4x+22+y2-8y+42-14
<=> (x2-2x2+22)+(y2-2x4+42)-14
<=> (x-2)2+(y-4)2-14
Vì (x-2)2+(y-4)2>= 0
=> F >= -14 => MIn F = -14 <=> x=2, y=4
b, <=> (x2+52+(2y)2-4xy+10x-20y) +(y2-2y+1)+2
<=> (x+5-2y )2+(y-1)2+2
Vì (x+5-2y) 2+(y-1)2 >= 0
=> G >= 2 => Min =2 <=> y=1, x= -3
\(F=x^2-4x+y^2-8y+6\)
\(F=\left(x^2-2.2x+2^2\right)+\left(y^2-2.4.y+4^2\right)-14\)
\(F=\left(x-2\right)^2+\left(y-4\right)^2-14\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\forall x\)
\(F=-14\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy \(F_{min}=-14\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
1:Tìm gtnn của biểu thức
A= x2-6x+11
B=x2-20x+101
C=x2-4xy +5y2+10x -22y+28
2:tìm gtln
D=4x-x2+3
E=-x2+6x-11
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(A\) là \(2\) khi \(x=3\)
\(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)
\(\Leftrightarrow\)\(x-10=0\)
\(\Leftrightarrow\)\(x=10\)
Vậy GTNN của \(B\) là \(1\) khi \(x=10\)
Chúc bạn học tốt ~
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Min}=2\Leftrightarrow x=3\)
b) \(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(x-10=0\Leftrightarrow x=10\)
Vậy \(B_{Min}=1\Leftrightarrow x=10\)
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vây \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
\(D=4x-x^2+3\)
\(-D=x^2-4x-3\)
\(-D=\left(x^2-4x+4\right)-7\)
\(-D=\left(x-2\right)^2-7\)
Mà \(\left(x-2\right)^2\ge0\)
\(\Rightarrow-D\ge-7\)
\(\Leftrightarrow D\le7\)
Dấu "=" xảy ra khi : \(x-2=0\Leftrightarrow x=2\)
Vậy \(D_{Max}=7\Leftrightarrow x=2\)
\(E=-x^2+6x-11\)
\(-E=x^2-6x+11\)
\(-E=\left(x^2-6x+9\right)+2\)
\(-E=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow-E\ge2\)
\(\Leftrightarrow E\le-2\)
Dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(E_{Max}=-2\Leftrightarrow x=3\)