tim x:x4=x
Chứng minh phương trình sau vô nghiệm với mọi x:
x4 - 2x3 + 4x2 - 3x + 2 = 0
\(x^4-2x^3+4x^2-3x+2=0\\ \Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)+\left(3x^2-3x+2\right)=0\\ \Leftrightarrow x^2\left(x-1\right)^2+\left(3x^2-3x+2\right)=0\)
Vì \(x^2\left(x-1\right)^2\ge0\) và dễ dàng chứng minh được \(3x^2-3x+2>0\) nên pt vô nghiệm
tim x dua vao quan he uoc boi:
tim so tu nhien x sao cho x-1 la uoc cua 12
tim so tu nhien x sao cho 2x+1 la uoc cua 28
tim so tu nhien x sao cho x+15 la boi cua x+3
tim cac so nguyen x,y sao cho (x+1)(y-2)=3
tim so nguyen x sao cho(x+2).(y-1)=2
tim so nguyen to x vua la uoc cua 275 vua la uoc cua 180
tim so nguyen to x,y biet x+y=12 va UCLL (x:y)=5
tim so tu nhien x,y biet x+y=32 va UCLL (x:y)=8
tim so tu nhien x biet x chia het cho10; xchia het cho12; x chia het cho15 va 100<x<150
tim so x nho nhat khac 0b biet x chia het cho 24 va 30
40 chia het cho x . 56 chia het cho x va x>6
tim X biet aaaa: X = a
tim X biet X x a = a0a0a0
a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)
b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)
A = 2/ x-1 .tim dieu kien cua x de A la phan so . tim A khi x = 2 ; x = -3. tim dieu kien cua x de A la so nguyen ( A thuoc Z )
choP=(1/(x-2)-x^2/(8-x^3)*(x^2+2x+4)/(x+2)0/1/(x^2-4) tim DKXD va rut gon b tim Min p c tim x nguyen de p chia het cho x^2+1
tim x de B= 2018-x/ 2017-x co GTLN. tim GTLN do
\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
a,rut gon
b,tim x de p duong
c,tim x de p = -5/2
d,tim x de p thuoc z
e,tim x de p >9/2
Cho M :x-2/x+3
a, Tim x € Z de M co gia tri nguyen
b, Tim x € Z de M la gia tri nho nhat . Tim gia tri nho nhat do
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
tim x nguyen biet /x-1/^2+(x-1)^2=2015./x-1/
tim x
giup dum
tim x biet x+34 la boi cua x+1 tim x biet 2x+1 la uoc cua x+82