10+..=50
10^50+1/10^50-3 và 10^50+3/10^50-1
tính nhanh
50 + 50 + 50 + 50 x 10 x 10 + 10
=5110
k mk đi mk k bn rùi
đó n,nha !!!!!!!!!!!
50 + 50 + 50 + 50 x 10 x 10 + 10
= (50 + 50) + 50 x 10 x 10 + 10
= 100 + 500 x 10 + 10
= 100 + 5000 + 10
= 5110
a=10 mũ 50+2/10 mũ 50 -2 và b=10 mũ 50/10 mũ 50-3
tính nhanh , bằng cách thuận tiện nhất :
50 x 2 + 8 x 50
10 + 10 + 10 + 50 + 50 + 10 + 10
50 x 2 + 8 x 50
= (2 + 8) x 50
= 10 x 50
= 500
10 + 10 + 10 + 50 + 50 + 10 + 10
= (10 x 5) + (50 + 50)
= 50 + 100
= 150
50 x 2 + 8 x 50
= 50 x ( 2 + 8 )
= 50 x 10
= 500
10 + 10 + 10 + 50 + 50 + 10 + 10
= 10 x 5 + 50 x 5
= 50 + 250
= 300
50x2+8x50
=50x(8+2)
=50x10
500
10+10+10+50+50+10
=10x5+50+50
=50+50+50
=50x3
=150
So sánh \(\frac{10^{50} + 1}{10^{50} - 3} và \frac{10^{50} - 3}{10^{50} + 1} \)
Ta có: \(\dfrac{10^{50}-3}{10^{50}+1}\)<\(\dfrac{10^{50}+1}{10^{50}+1}\)<\(\dfrac{10^{50}+1}{10^{50}-3}\)
=>\(\dfrac{10^{50}-3}{10^{50}+1}\)<\(\dfrac{10^{50}+1}{10^{50}-3}\)
vậy (đpcm)
so sánh A=1050+2/1050-1 và B=1050/1050-3
C1:A = \(\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=\frac{10^{50}-1}{10^{50}-1}+\frac{3}{10^{50}-1}\)
= \(1+\frac{3}{10^{50}-1}\)
B = \(\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=\frac{10^{50}-3}{10^{50}-3}+\frac{3}{10^{50}-3}\)
= \(1+\frac{3}{10^{50}-3}\)
Vì \(\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)=) \(1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\)=) \(A< B\)
C2: Áp dụng tính chất : Nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Vì B > 1 =) B > \(\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
(=) B > A
10+10+10+10+10-50+100-50=?
10 + 10 + 10 + 10 + 10 - 50 + 100 - 50 = 50
So Sánh :
A=\(\frac{10^{50}+2}{10^{50}-1}\)và B=\(\frac{10^{50}}{10^{50}-3}\)
Ta có:
\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}\)
Vì \(10^{50}-1>10^{50}-3\Rightarrow\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)(2 phân số có cùng tử số, mẫu số của phân số nào lớn hơn thì phân
số đó nhỏ hơn)
\(\Rightarrow1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\Rightarrow A< B\)
\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=1+\frac{3}{10^{50}-1}.\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}=1+\frac{3}{10^{50}-3}.\)
Do 1050-1 > 1050-3 ; => \(1+\frac{3}{10^{50}-3}>1+\frac{3}{10^{50}-1}\)
=> B > A
\(A=\frac{10^{50}+2}{10^{50}-1}=\frac{10^{50}-1+3}{10^{50}-1}=\)\(\frac{10^{50}-1}{10^{50}-1}+\frac{3}{10^{50}-1}\)\(=1+\frac{3}{10^{50}-1}\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{10^{50}-3+3}{10^{50}-3}\)\(=\frac{10^{50}-3}{10^{50}-3}+\frac{3}{10^{50}-3}\)\(=1+\frac{3}{10^{50}-3}\)
Ta có: 1<3 suy ra \(10^{50}-1>10^{50}-3\)
Suy ra\(\frac{3}{10^{50}-1}< \frac{3}{10^{50}-3}\)
Suy ra \(1+\frac{3}{10^{50}-1}< 1+\frac{3}{10^{50}-3}\)
Suy ra A<B
60 +50 + 50 + 40 + 10 + 10 + 10 + 10
60 + 50 + 50 + 40 + 10 + 10 + 10 + 10
= ( 60 + 40 ) + ( 50 + 50 ) + 10 + 10 + 10 + 10
= 100 + 100 + 10 . 4
= 100 + 100 + 40
= 200 + 40
= 240
60 + 50 + 50 + 40 + 10 + 10 + 10 + 10
= ( 60 + 40 ) + ( 50 + 50 ) + 10 + 10 + 10 + 10
= 100 + 100 + 10 . 4
= 100 + 100 + 40
= 200 + 40
= 240
60 + 50 + 50 + 40 + 10 + 10 + 10 + 10 = 240
So sánh 1050+1/1050-3 với 1050+3/1050-1
Giúp mình với mình tick cho
\(\frac{10^{50}+1}{10^{50}-3}=\frac{\left(10^{50}-3\right)+4}{10^{50}-3}=1+\frac{4}{10^{50}-3}\)
\(\frac{10^{50}+3}{10^{50}-1}=\frac{\left(10^{50}-1\right)+4}{10^{50}-1}=1+\frac{4}{10^{50}-1}\)
Ta so sánh \(\frac{4}{10^{50}-3}với\frac{4}{10^{50}-1}\) . Ta có \(\frac{4}{10^{50}-3}\) > \(\frac{4}{10^{50}-1}\) => 1050+1/1050-3 > 1050+3/1050-1
Ta có :
\(\frac{10^{50}+1}{10^{50}-3}=\frac{10^{50}-3+4}{10^{50}-3}=1+\frac{4}{10^{50}-3}\)
\(\frac{10^{50}+3}{10^{50}-1}=\frac{10^{50}-1+4}{10^{50}-1}=1+\frac{4}{10^{50}-1}\)
Do \(\frac{4}{10^{50}-3}>\frac{4}{10^{50}-1}\)
\(\Rightarrow1+\frac{4}{10^{50}-3}>1+\frac{4}{10^{50}-1}\)
\(\Rightarrow\frac{10^{50}+1}{10^{50}-3}>\frac{10^{50}+3}{10^{50}-1}\)
Chúc bạn học tốt !!!
10 mũ 50 +1:10 mũ 50-3 = 10 mũ 50 -1