Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Diệu
Xem chi tiết
Hoang Hung Quan
3 tháng 7 2017 lúc 9:03

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

Lightning Farron
3 tháng 7 2017 lúc 9:10

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

nguyễn minh quý
Xem chi tiết
Bá đạo sever là tao
3 tháng 7 2017 lúc 17:33

Tournament of the Towns, 1993 :3

Cho x là no pt, by C-S:

\(a^2+b^2\ge\frac{\left(x^4+2x^2+1\right)^2}{x^2+x^6}\ge8\)

\(\Leftrightarrow\left(x^2-1\right)^4\ge0\) 

từ đây suy ra nghiệm :3

Bá đạo sever là tao
3 tháng 7 2017 lúc 17:33

à sorry mk gửi nhầm câu hỏi ==" :v

Thắng Nguyễn
3 tháng 7 2017 lúc 18:42

Câu hỏi của Phạm Hồ Thanh Quang - Toán lớp 8 - Học toán với OnlineMath

Hoàn Minh
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Vũ Đình Thái
3 tháng 2 2021 lúc 16:04

Xét \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\)

\(\Leftrightarrow1=\left(1-\dfrac{1}{x}\right)+\left(1-\dfrac{1}{y}\right)+\left(1-\dfrac{1}{z}\right)\)

\(\Leftrightarrow1=\dfrac{x-1}{x}+\dfrac{y-1}{y}+\dfrac{z-1}{z}\)

Áp dụng bđt Bunhiacopxki có:

\(x+y+z=\left(x+y+z\right)\left(\dfrac{x-1}{x}+\dfrac{y-1}{y}+\dfrac{z-1}{1}\right)\ge\left(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\right)^2\)\(\Leftrightarrow\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)

Dấu "=" xảy ra khi x=y=z=1,5Tự đăng câu hỏi xong tự trả lời  (T-T)    

LÂM 29
Xem chi tiết
Nguyễn thị thu thủy
Xem chi tiết
chuyên toán thcs ( Cool...
23 tháng 8 2019 lúc 11:49

Trả lời

Đề có thiếu dữ liệu k đây 

nhìn trả hiểu mồ tệt j cả 

mong viết đầy đủ đề cho ạ 

đề sai 

sửa lai đi

chào

Phan Tiến Ngọc
Xem chi tiết
Uzumaki naruto
30 tháng 12 2015 lúc 21:07

oh. đễ mà
nhưng em học lop 8 
để khi nào em lên lớp 9 em giải cho :D

Khánh Ngọc
Xem chi tiết
Rhider
Xem chi tiết
Trịnh Võ Hải Long
Xem chi tiết
Nguyễn Doãn Kiệt
3 tháng 6 2015 lúc 11:02

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{z\left(x+y+z\right)}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\)(x + y)z(x + y + z) + (x + y)xy = 0

\(\Leftrightarrow\)(x + y) [z(x + y + z) + xy] = 0

\(\Leftrightarrow\)(x + y)[z(x + z) + y(x + z)] = 0

\(\Leftrightarrow\) (x + y)(y + z)(z + x) = 0

Trường hợp 1: x + y = 0\(\Leftrightarrow\)x = -y\(\Leftrightarrow\)x2015 = -y2015\(\Leftrightarrow\)\(\frac{1}{x^{2015}}=-\frac{1}{y^{2015}}\)\(\Leftrightarrow\)\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}=0\)

và x2015  + y2015 = 0. Do đó \(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)

Trường hợp 2: y + z  = 0 làm tương tự

Trường hợp 3: x + z  = 0 làm tương tự

Vậy bài toán được chứng minh.

o0o nhok ngu ngơ o0o đừn...
7 tháng 11 2017 lúc 12:37

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy nha

nguyenvankhoi196a
7 tháng 11 2017 lúc 12:43

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web