Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
20 tháng 5 2017 lúc 8:22

Phương pháp tọa độ trong mặt phẳng

Lê thị Kim thư
Xem chi tiết
Trân Trần
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Minamoto Reika
Xem chi tiết
Ngô Thành Chung
16 tháng 3 2021 lúc 22:06

PT đường tròn (x - 3)2 + (y + 1)2 = 4

Vậy đường tròn (C) có tâm I (3 ; -1) và bán kính bằng 2

 \(\overrightarrow{IA}=\left(-2;0\right)\)⇒ IA = 2 ⇒ A thuộc đường tròn

\(\overrightarrow{IB}=\left(-2;4\right)\) ⇒ IB > 2 ⇒ B nằm ngoài đường tròn

NguyenDuc Tuyen
16 tháng 3 2021 lúc 21:34

CHI THAY cac toa do diem vao la xong

 

Hàn Nhật Hạ
Xem chi tiết
Vidia Hien
Xem chi tiết
Lan Nhi Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 1 2022 lúc 8:35

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)

a. Đường thẳng cắt đường tròn tại 2 điểm pb khi:

\(d\left(I;d\right)< R\Leftrightarrow\dfrac{\left|\sqrt{2}-2m+1-\sqrt{2}\right|}{\sqrt{2+m^2}}< 3\)

\(\Leftrightarrow\left(2m-1\right)^2< 9\left(m^2+2\right)\)

\(\Leftrightarrow8m^2+4m+17>0\) (luôn đúng)

Vậy đường thẳng luôn cắt đường tròn tại 2 điểm pb với mọi m

b. \(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\) do \(sin\widehat{AIB}\le1\)

Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\Rightarrow\Delta IAB\) vuông cân tại I

\(\Rightarrow d\left(I;d\right)=\dfrac{R}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2m-1\right|}{\sqrt{m^2+2}}=\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow m^2+8m+16=0\Rightarrow m=-4\)

Lan Nhi Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 2022 lúc 15:14

Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=3\)

a. \(\overrightarrow{IM}=\left(0;2\right)\Rightarrow IM=\sqrt{0^2+2^2}=2< R\Rightarrow\) M nằm trong đường tròn

b. \(d\left(I;d\right)=\dfrac{\left|2-\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=2\sqrt{2}< 3\Rightarrow d\) cắt đường tròn tại 2 điểm

c. Khoảng cách giữa 2 điểm trên đường tròn là lớn nhất khi chúng nằm ở 2 mút đường kính

\(\Rightarrow\) d' đi qua tâm I

Do d' vuông góc d nên nhận (1;1) là 1 vtpt

Phương trình: \(1\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow x+y-1=0\)