Tìm x, y thoả mãn: − 3 3 − 2 x − 4 y + 5 = 0
Tìm các số nguyên x,y thoả mãn: x^4 +2x^3 +x^2 + x+ 3= y^2
Tìm x, y thoả mãn: |x - 1| + |x - 2| + |y - 3| + |x - 4|
| x - 1| + | x - 2| + | y - 3| + | x - 4|
= 179/28 + 151/28 + 3 + 95/28
= 509/28
Bài 1: a, Tìm GTNN của A = ∣x - 3∣ + ∣x - 4∣ + ∣x - 7∣ b, Tìm x, y thoả mãn ∣x - 2∣ + ∣ y²⁰ + 9∣ = 9
a.
\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)
\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)
Áp dụng BĐT trị tuyệt đối:
\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)
\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)
\(\Rightarrow A_{min}=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)
Câu b đã giải bên dưới
Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
Chị độc giải sau khi em biết làm thôi à.
tìm các số nguyên tố x;y thoả mãn:(x-2)^2.(y-3)=-4
KO TỀM ĐC VÌ X NGUYÊN TỐ THÌ Y KO NGUYÊN TỐ .(CHƯA CHẮC ĐÃ DÚNG NHA)
\(\text{Tìm tất cả cặp số nguyên x, y thoả mãn} \\y^2+y=x^4+x^3+x^2+x\)
Ta có \(y^2+y=x^4+x^3+x^2+x\)
\(\Leftrightarrow\left(2y+1\right)^2=4x^4+4x^3+4x^2+x+1\)
Nếu \(\left(2y+1\right)^2< \left(2x^2+x\right)^2\Rightarrow3x^2+4x+1< 0\Rightarrow\frac{-1}{3}< x< -1\)vô lí
Vậy \(\left(2y+1\right)^2\ge\left(2x^2+x\right)^2\)mặt khác\(\left(2y+1\right)^2< \left(2x^2+x+2\right)^2\)nên theo điều kiện chặn ta sẽ tìm được x;y thỏa mãn
tìm các số nguyên tố x,y thoả mãn :(x-2)2.(y-3)2=-4
Ta có: (x - 2)2 > 0; (y - 3)2 > 0
Mà (x - 2)2 . (y - 3)2 = -4 < 0 (vô lí)
Vậy không có x; y thỏa mãn.
tìm cặp số nguyên (x,y )thoả mãn:
a. |x+4| + |y-2| = 3
x, y nguyên thì |x+4| và |y-2| cũng là số nguyên.
+) vì |x+4| và |y-2| luôn lớn hơn hoặc bằng 0 nên để thỏa mãn bài toán thì chỉ xảy ra các trường hợp sau
+) TH1: |x+4| = 3 và |y-2| = 0 <=> x = -1 hoặc x = -7
và y = 2.
ta có các cặp (x,y): (-1;2) , (-7; 2)
+) TH2: |x+4| = 2 và |y-2| = 1 <=> x = -2 hoặc x = -6 và y = 3 hoặc y = 1
ta có các cặp (x,y): (-2;1) , (-2; 3) , (-6;1) , (-6;3)
+) TH3: |x+4| = 1 và |y-2| = 2 <=> x = -3 hoặc x = -5 và y = 4 hoặc y = 0
ta có các cặp (x,y): (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4)
+) TH4: |x+4| = 0 và |y-2| = 3 <=> x = -4 và y = -1 hoặc y = 5
ta có các cặp (x,y): (-4;-1) , (-4; 5)
Vậy có các cặp (x;y) thỏa mãn điều kiện là:(-1;2) , (-7; 2), (-2;1) , (-2; 3) , (-6;1) , (-6;3), (-3;4) , (-3; 0) ; (-5; 0) ; (-5;4), (-4;-1) , (-4; 5)
Tìm 3 số nguyên tố x, y, z thoả mãn x2+y3=z4