Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thuy Linh
Xem chi tiết
Kudo Shinichi
31 tháng 12 2019 lúc 16:37

Áp dụng BĐT Cauchy cho 2 só dương ta có :
\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(a+c\ge2\sqrt{ac}\)

\(b+c\ge2\sqrt{bc}\)

Nhân vế theo vế các BĐT cùng chiều trên ta được :

\(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16\sqrt{a^2b^2c^2}=16abc\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=a\end{cases}}\)

                                     b =c

\(\Leftrightarrow a=b=c=1\)

     Vậy \(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16abc\) với a,b,c dương 

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Kuro Kazuya
29 tháng 4 2017 lúc 1:45

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}a^2b+\dfrac{1}{b}\ge2\sqrt{\dfrac{a^2b}{b}}=2a\\b^2c+\dfrac{1}{c}\ge2\sqrt{\dfrac{b^2c}{c}}=2b\\c^2a+\dfrac{1}{a}\ge2\sqrt{\dfrac{c^2a}{a}}=2c\end{matrix}\right.\)

\(\Rightarrow a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge2\left(a+b+c\right)\)

\(\Rightarrow\dfrac{1}{2}\left(a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge a+b+c\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

Không Bít
Xem chi tiết
Kudo Shinichi
31 tháng 12 2019 lúc 15:17

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\hept{\begin{cases}a^2b+\frac{1}{b}\ge2\sqrt{\frac{a^2b}{b}}=2a\\b^2c+\frac{1}{c}\ge2\sqrt{\frac{b^2c}{c}}=2b\\c^2a+\frac{1}{a}\ge2\sqrt{\frac{c^2a}{a}}=2c\end{cases}}\)

\(\Rightarrow a^2b+b^2c+c^2a+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(a+b+c\right)\)

\(\frac{\Rightarrow1}{2}\left(a^2b+b^2c+c^2a+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a+b+c\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Phùng Minh Quân
31 tháng 12 2019 lúc 15:22

\(a^2b+\frac{1}{b}-2a\ge2\sqrt{\frac{a^2b}{b}}-2a=0\)\(\Leftrightarrow\)\(\frac{1}{2}\left(a^2b+\frac{1}{b}\right)\ge a\)

phần còn lại mình dành cho bạn :) 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2018 lúc 8:59

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 12 2018 lúc 12:54

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 3 2017 lúc 12:29

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2019 lúc 3:48

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 9 2019 lúc 5:28

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 9 2018 lúc 5:25

Giải sách bài tập Toán 10 | Giải sbt Toán 10