Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thị Hà Vy
Xem chi tiết
Trần Ngọc Mai
Xem chi tiết
Mọt Sách
21 tháng 3 2016 lúc 13:10

Điều kiện\(\begin{cases}7x+y\ge0\\2x+y\ge0\end{cases}\); Đặt \(\begin{cases}u=\sqrt{7x+y}\ge0\\v=\sqrt{2x+y}\ge0\end{cases}\)\(\Rightarrow\)\(\begin{cases}u^2=7x+y\\v^2=2x+y\end{cases}\)\(\Rightarrow\)\(x=\frac{u^2-v^2}{5}\)\(y=\frac{7v^2-2u^2}{5}\)

HPT trở thành:     \(\begin{cases}u+v=5\\u^2-v^2-7v^2+2u^2+5v=5\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}u+v=5\\3u^2-8v^2+5v-5=0\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}u=5-v\\3\left(5-v\right)^2-8v^2+5v-5=0\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}u=5-v\\-5v^2-25v+70=0\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}u=5-v\\v^2+5v-14=0\left(\text{*}\right)\end{cases}\)

(*) \(\Leftrightarrow v=2\) (nhận)  hoặc  \(v=-7\) (loại) ; nên  HPT trên  \(\Leftrightarrow\) \(\begin{cases}u=3\\v=2\end{cases}\)

Do đó HPT đã cho trở thành \(\begin{cases}7x+y=9\\2x+y=4\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=1\\y=2\end{cases}\) (phù hợp)

Nguyễn Phương Thảo
Xem chi tiết
nguyen don
Xem chi tiết
Lê Song Phương
Xem chi tiết
IR IRAN(Islamic Republic...
10 tháng 9 2023 lúc 14:26

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

Vũ Lê Anh
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 11 2023 lúc 20:15

Đề bị lỗi công thức rồi em nhé!

khải
Xem chi tiết
Nguyễn Ngọc Lộc
8 tháng 2 2021 lúc 16:38

ĐKXĐ : \(\left\{{}\begin{matrix}2x-1>0\\y+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>-2\end{matrix}\right.\)

PT ( I ) \(\Leftrightarrow\left(\sqrt{\dfrac{2x-1}{y+2}}+\sqrt{\dfrac{y+2}{2x-1}}\right)^2=4\)

\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}+2\sqrt{\left(\dfrac{2x-1}{y+2}\right)\left(\dfrac{y+2}{2x-1}\right)}=4\)

\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}=2\)

Từ PT ( II ) ta được : \(x=12-y\)

- Thế x vào PT trên ta được : \(\dfrac{2\left(12-y\right)}{y+2}+\dfrac{y+2}{2\left(12-y\right)}=2\)

\(\Leftrightarrow4\left(y-12\right)^2+\left(y+2\right)^2=4\left(12-y\right)\left(y+2\right)\)

\(\Leftrightarrow4\left(y^2-24y+144\right)+y^2+4y+4=4\left(12y+24-y^2-2y\right)\)

\(\Leftrightarrow4y^2-96y+576+y^2+4y+4-40y-96+4y^2=0\)

\(\Leftrightarrow9y^2-132y+484=0\)

\(\Leftrightarrow y=\dfrac{22}{3}\left(TM\right)\)

- Thay lại vào PT ta được : \(x=\dfrac{14}{3}\)

Vậy phương trình có nghiệm là \(S=\left\{\left(\dfrac{22}{3};\dfrac{14}{3}\right);\left(\dfrac{14}{3};\dfrac{22}{3}\right)\right\}\)

Nguyễn Bùi Đại Hiệp
Xem chi tiết
laughtpee
Xem chi tiết