giải hệ phương trình :
\(\sqrt{7x+y}+\sqrt{2x+y}=5\)
\(\sqrt{2x+y}+x-y=1\)
giải các hệ phương trình sau
\(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=1\end{cases}}\)
Giải hệ phương trình \(\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{cases}\)
Điều kiện\(\begin{cases}7x+y\ge0\\2x+y\ge0\end{cases}\); Đặt \(\begin{cases}u=\sqrt{7x+y}\ge0\\v=\sqrt{2x+y}\ge0\end{cases}\)\(\Rightarrow\)\(\begin{cases}u^2=7x+y\\v^2=2x+y\end{cases}\)\(\Rightarrow\)\(x=\frac{u^2-v^2}{5}\)và \(y=\frac{7v^2-2u^2}{5}\)
HPT trở thành: \(\begin{cases}u+v=5\\u^2-v^2-7v^2+2u^2+5v=5\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}u+v=5\\3u^2-8v^2+5v-5=0\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}u=5-v\\3\left(5-v\right)^2-8v^2+5v-5=0\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}u=5-v\\-5v^2-25v+70=0\end{cases}\)\(\Leftrightarrow\) \(\begin{cases}u=5-v\\v^2+5v-14=0\left(\text{*}\right)\end{cases}\)
(*) \(\Leftrightarrow v=2\) (nhận) hoặc \(v=-7\) (loại) ; nên HPT trên \(\Leftrightarrow\) \(\begin{cases}u=3\\v=2\end{cases}\)
Do đó HPT đã cho trở thành \(\begin{cases}7x+y=9\\2x+y=4\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=1\\y=2\end{cases}\) (phù hợp)
giải hệ phương trình: \(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{cases}}\)
giải hệ phương trình \(\sqrt{7x+y}+\sqrt{2x+y}=5va\sqrt{2x+y}+x-y=1\)
a) Giải phương trình trên tập số thực:
\(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
b) Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}x^2+2x\sqrt{xy}=y^2\sqrt{y}\\\left(4x^3+y^3+3x^2\sqrt{x}\right)\left(15\sqrt{x}+y\right)=3\sqrt{x}\left(y\sqrt{y}+x\sqrt{y}+4x\sqrt{x}\right)^2\end{matrix}\right.\) ; với \(x,y\inℝ\)
a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)
Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)
Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)
\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)
\(\Leftrightarrow b=a\)
Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)
\(\Leftrightarrow x^3-4x^2-6x+5=0\)
\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)
b) Giải hệ phương trình 1/(3x) + (2x)/(3y) = (x + sqrt(y))/(2x ^ 2 + y); 2(2x + sqrt(y)) = sqrt(2x + 6) - y
Đề bị lỗi công thức rồi em nhé!
giải hệ phương trình sau
\(\dfrac{\sqrt{2x-1}}{\sqrt{y+2}}+\dfrac{\sqrt{y+2}}{\sqrt{2x-1}}=2\)
\(x+y=12\)
ĐKXĐ : \(\left\{{}\begin{matrix}2x-1>0\\y+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>-2\end{matrix}\right.\)
PT ( I ) \(\Leftrightarrow\left(\sqrt{\dfrac{2x-1}{y+2}}+\sqrt{\dfrac{y+2}{2x-1}}\right)^2=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}+2\sqrt{\left(\dfrac{2x-1}{y+2}\right)\left(\dfrac{y+2}{2x-1}\right)}=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}=2\)
Từ PT ( II ) ta được : \(x=12-y\)
- Thế x vào PT trên ta được : \(\dfrac{2\left(12-y\right)}{y+2}+\dfrac{y+2}{2\left(12-y\right)}=2\)
\(\Leftrightarrow4\left(y-12\right)^2+\left(y+2\right)^2=4\left(12-y\right)\left(y+2\right)\)
\(\Leftrightarrow4\left(y^2-24y+144\right)+y^2+4y+4=4\left(12y+24-y^2-2y\right)\)
\(\Leftrightarrow4y^2-96y+576+y^2+4y+4-40y-96+4y^2=0\)
\(\Leftrightarrow9y^2-132y+484=0\)
\(\Leftrightarrow y=\dfrac{22}{3}\left(TM\right)\)
- Thay lại vào PT ta được : \(x=\dfrac{14}{3}\)
Vậy phương trình có nghiệm là \(S=\left\{\left(\dfrac{22}{3};\dfrac{14}{3}\right);\left(\dfrac{14}{3};\dfrac{22}{3}\right)\right\}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{matrix}\right.\)
Giải hệ phương trình:
\(\hept{\begin{cases}2\sqrt{2x+3y}+\sqrt{5-x-y}=7\\3\sqrt{5-x-y}-\sqrt{2x+y-3}=1\end{cases}}\)