Cho x−4 y−7 z3 .Tính giá trị biểu thức A −2x y 5z2x−3y−6z với x,y,z khác 0 và 2x 3y 6z khác 0
cho x/-4 = y/7 = z/3 tính giá trị biểu thức: A= -2x + y + 5z/ 2x - 3y - 6z
( với x, y, z khác 0 và 2x - 3y - 6z khác 0 )
Cho x/-4=y/-7=z/3. Tính giá trị biểu thức A=-2x+y+5z/x-3y-6z (với x, y, z và 2x-3y-6z khác 0). Mình mong các bạn giúp ạ
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)
cho x/-4=y/-7=z/3 tính giá trị của A=-2xy+5z/2x-3y-6z với x,ý,z khác 0 và 2x-3y-6z khác 0
cho \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}\)tính giá trị biểu thức\(A=\dfrac{-2x+y+5z}{2x-3x-6z}\)với x,y,z\(\ne\)0 và 2x-3y-6z\(\ne\)0
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow x=-4k;y=-7k;z=3k\) (1)
Thay (1) vào A , ta được
\(A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2\left(-4k\right)-3\left(-7k\right)-6.3k}\)
\(\Rightarrow A=\dfrac{8k+\left(-7k\right)+15k}{-8k+21k+\left(-18k\right)}\)
\(\Rightarrow A=\dfrac{k[8+\left(-7\right)+15]}{k[-8+21+\left(-18\right)]}\)
\(\Rightarrow A=\dfrac{16k}{-5k}\)
\(\Rightarrow A=\dfrac{16}{5}\)
Vậy \(A=\dfrac{16}{5}\)
cho x/-4=y/-7=z/3.Tính gt iểu thức A=-2-y+5z/2x-3y-6z (với x,y,z không bằng 0 và 2x-3x-6z=khác 0)
Đặt x/-4=k => x=-4k
y/-7=k => y=-7k
z/3=k => z=3k
=> A=8k+7k+15k / -8k+21k-18k
A=30k / -5k
=> A=-6
Cho \(\frac{x}{-4}\) = \(\frac{y}{-7}\) = \(\frac{z}{3}\).Tính giá trị biểu thức: A=\(\frac{-2x+y+5z}{2x-3y-6z}\) ( với x,y,z khác 0 và 2x-3y-6z khác 0
Cho \(\frac{x}{-4}\) = \(\frac{y}{-7}\) = \(\frac{z}{3}\). Tính giá trị biểu thức: A=\(\frac{-2x+y+5z}{2x-3y-6z}\) (với x,y,z khác 0 và 2x-3y-6z khác 0)
\(cho\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}\)tính giá trị biểu thức của A\(=\dfrac{-2x+y+5z}{2x-3y-6z}\)(với x,y,z\(\ne0\)và a+b+c=0)
\(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2\left(-4k\right)-7k+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-5k}=-\dfrac{16}{5}\)
Cho \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}\). Tính giá trị của biểu thức:
\(A=\frac{-2x+y+5z}{2x-3y-6z}\)(Với x,y,z \(\ne\) 0 và 2x - 3y - 6z \(\ne\)0)
Bạn nào có tâm giải chi tiết hộ mình =)))
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/-4=y/-7=z/3
=-2x+y+5z/-2.(-4)+(-7)+5.3
= 2x-3y-6z/2.(-4)-3.(-7)-6.3
=> -2x+y+5z/16=2x-3y-6z/-5
=> -2x+y+5z/2x-3y-6z
=16/-5
Vậy A = 16/-5
Đặt x/-4=y/-7=z/3=k
=>x=-4k,y=-7k,z=3k(*)
Thay (*) vào A ta có:
A=(-2x+y+5z)/(2x-3y-6z)
=(8k-7k+15k)/(-8k+21k-18k)
=16k/-5k
=16/-5
Vậy A=-16/5