So sánh
\(\sqrt{15}+\sqrt{80}+\sqrt{24}+\sqrt{3}và20\)
so sánh: \(3\sqrt[3]{3}\) và\(\sqrt[3]{80}\)
\(3\sqrt[3]{3}=\sqrt[3]{81}>\sqrt[3]{80}\)
SO SÁNH
\(1+\sqrt{15}và\sqrt{24}\)
Nik t tạo ra ko để cho m trả lời linh tin nha :))))))) Nguyễn việt Hiếu tk fake Ai ko tin mình là Hiếu CTV thì ib
Ta có :
\(\left(1+\sqrt{15}\right)^2=1+2\sqrt{15}+15=16+2\sqrt{15}\)
\(\left(\sqrt{24}\right)^2=24=16+8=16+2.4=16+2\sqrt{16}\)
Ta thấy \(16+2\sqrt{15}< 16+2\sqrt{16}\) nên \(\left(1+\sqrt{15}\right)^2< \left(\sqrt{24}\right)^2\)
\(\Rightarrow\)\(1+\sqrt{15}< \sqrt{24}\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
Chúc bạn học tốt ~
Ta có:
\(\left(1+\sqrt{15}\right)^2=1+2.\sqrt{15}+15< 1+2.\sqrt{16}+15=1+2.4+15=1+8+15=24\)
\(\left(\sqrt{24}\right)^2=24\)
ta có:
\(1+2.\sqrt{15}+15< 24\)
\(\Rightarrow\)\(1+\sqrt{15}< \sqrt{24}\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
Nguồn: Phùng Minh Quân
SO SÁNH
\(1+\sqrt{15}=\sqrt{24}\)
So sánh
a) \(\sqrt{37}+\sqrt{83}\) và 15
b) \(\sqrt{48}+\sqrt{80}\) và 16
c) \(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{56}+\sqrt{72}+\sqrt{90}+\sqrt{110}\) và 56
\(\sqrt{3}+\sqrt{15}và\sqrt{5}+4\) so sánh
\(\sqrt{3}+\sqrt{15}< \sqrt{5}+\sqrt{16}=\sqrt{5}+4\)
So sánh
\(\sqrt{24}+\sqrt{45}\) và 12
\(\sqrt{37}-\sqrt{15}\)và 2
CÁI ĐẦU TIÊN LỚN HƠN CÁI THỨ 2
DỄ THẾ
Ta có:
\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12\)
\(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2\)
so sánh \(\sqrt{15}+1\) và \(\sqrt{24}\)
so sánh \(\sqrt{2002}+\sqrt{2004}\) và \(2\sqrt{2005}\)
GIÚP MÌNH GIẢI BÀI NÀY NHA
cả hai bài đều giải bằng cách bình phương cả hai vế rồi so sánh
So sánh từng vế:
\(\sqrt{15}+1=4,872983346\)
\(\sqrt{24}=4,898979486\)
Vậy: \(\sqrt{15}+1< \sqrt{24}\)
\(\sqrt{2002}+\sqrt{2004}=89,50977321\)
\(2\sqrt{2005}=89,5545271\)
Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)
P/s: Ko chắc
Bn làm theo cách của mk hoặc bình phương 2 vế lên rồi so sánh là OKE
So sánh (làm bằng cách tự luận):
\(\sqrt[3]{7}+\sqrt{15}và\sqrt{10}+\sqrt[3]{28}\)
Ta có:
\(\sqrt[3]{7}< \sqrt[3]{8}=2\) và \(\sqrt{15}< \sqrt{16}=4\), suy ra \(\sqrt[3]{7}+\sqrt{15}< 6\).
\(\sqrt{10}>\sqrt{9}=3\) và \(\sqrt[3]{28}>\sqrt[3]{27}=3\), suy ra \(\sqrt{10}+\sqrt[3]{28}>6\).
Vậy \(\sqrt[3]{7}+\sqrt{15}< \sqrt{10}+\sqrt[3]{28}\).
so sánh
\(a.3\sqrt{26}\) và 15
\(b.-5\sqrt{35}\) và 30
c.\(\sqrt{34-10\sqrt{3}}\) và 5-\(\sqrt{3}\)
d.\(\sqrt{16+225}\) và \(\sqrt{16}+\sqrt{225}\)