Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nghiêm Thảo Tâm
Xem chi tiết
trương hương giang
Xem chi tiết
Mây
13 tháng 1 2016 lúc 11:14

xy = -2

Có 4 TH xảy ra :

TH1 : x = -1 và y = 2

TH2 : x = 1  và y = -2

TH3 ; x = -2 và y = 1

TH4 : x = 2 => y = -1

cộng tác viên
Xem chi tiết
Vương Băng Khanh
Xem chi tiết
Đinh Phương Nga
27 tháng 3 2016 lúc 23:09

thuộc chuyên đề gì vậy bạn?

Đinh Phương Nga
27 tháng 3 2016 lúc 23:31

bao giờ bạn nộp bài vậy? 

Đinh Phương Nga
27 tháng 3 2016 lúc 23:32

mk làm đc rồi

Vu Dang Toan
Xem chi tiết
Thắng Nguyễn
17 tháng 1 2017 lúc 22:13

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

Trần Xuân Quyết
Xem chi tiết
trương hương giang
Xem chi tiết
chùm violympic
10 tháng 1 2016 lúc 19:45

y;x=(2;1),(-2;1),(-4;0)

Anh Đức Trần
Xem chi tiết
Nguyễn Linh Chi
24 tháng 7 2020 lúc 22:54

+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7 

+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau: 

Không mất tính tổng quát: g/s: \(x\ge y\ge z\)

Vì x2 + y2 + z2 = 14  => \(x^2\le14\Rightarrow x\le\sqrt{14}< 4\)  Vì x nguyên dương 

=> x \(\in\){ 1; 2; 3}

+) Với x = 3 => \(\hept{\begin{cases}y+z=3\\y^2+z^2=5\end{cases}\Rightarrow\hept{\begin{cases}y+z=3\\y^2\le5\end{cases}}\Rightarrow\hept{\begin{cases}y+z=3\\y\in\left\{1;2\right\}\end{cases}}}\)

Khi y = 2 => z = 1  ( thỏa mãn)

Khi y = 1 => z = 2 ( loại) 

+) Với x = 2 => \(\hept{\begin{cases}y+z=4\\y^2+z^2=10\end{cases}}\)=> Tồn tại 1 trong 2 số y; z lớn hơn 2 => lớn hơn x => loại 

+) Với x = 1 => Loại

Vậy nghiệm : ( 3; 2; 1) và các hoán vị của nó: ( 3; 1; 2) ; ( 2; 3; 1) ; ( 2; 1; 3 ) ; ( 1; 2; 3) ; ( 1; 3; 2)

Khách vãng lai đã xóa
MARC LEVY BIN
Xem chi tiết
Nguyễn Ngọc Huy Toàn
18 tháng 5 2022 lúc 17:27

D.\(x^2+5x+9< 0\)

\(x^2+5x+9=\left(x^2+2x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right)-\left(\dfrac{5}{2}\right)^2+9=\left(x+\dfrac{5}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

Mà \(x^2+5x+9< 0\)

--> pt vô nghiệm