Tìm x,y,z thuộc Z
x^2+(y-2)^2+(32+9)^2=0
giải chi tiết nha
cho a,b,c là số thực # 0. Tìm x,y,z là số thực # 0 thỏa mãn xy/ay+bx=yz/bz+cy=zx/cx+az=x^2+y^2+z^2/a^2+b^2+c^2
Giải chi tiết nha
Tìm x;y thuộc Z biết:
x*y=-2 (giải chi tiết hộ mk nha)
xy = -2
Có 4 TH xảy ra :
TH1 : x = -1 và y = 2
TH2 : x = 1 và y = -2
TH3 ; x = -2 và y = 1
TH4 : x = 2 => y = -1
tìm x,y,z biết
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và xy+yz+zx=64
giải chi tiết
Cho \(\frac{1}{yz-x^2}+\frac{1}{zx-y^2}+\frac{1}{xy-z^2}=0\)CMR: \(\frac{x}{\left(yz-x^2\right)^2}+\frac{y}{\left(zx-y^2\right)^2}+\frac{z}{\left(xy-z^2\right)^2}=0\)
Làm nhanh dùm vs. Giải chi tiết ra nha, ko ghi chtt
Cho x + y + z = 1 ; x , y , z > 0
CMR : \(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\) >/ 14
Cho x , y , z thuộc Z ; x,y,z khác 0 và \(\sqrt{x+y+z-2018}+\sqrt{2018\left(xy+yz+zx-xyz\right)}=0\)
Tính S = \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}\)
CÁC BẠN GIẢI GIÚP MÌNH CHI TIẾT BÀI NÀY VỚI !
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
Tìm x,y,z thuộc Z
x^2+(y-2)^2+(32+9)^2=0
Tìm x và y biết:
|x-5|+|y+1|=2 (x; y) thuộc Z
Giải chi tiết hộ mk nha ai nhanh+ đúng mk tích cho
Cho x+y+z=6 và x2+y2+z2=14. Hãy tìm x,y,z...Có lời giải chi tiết nha..Thanks..
+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7
+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau:
Không mất tính tổng quát: g/s: \(x\ge y\ge z\)
Vì x2 + y2 + z2 = 14 => \(x^2\le14\Rightarrow x\le\sqrt{14}< 4\) Vì x nguyên dương
=> x \(\in\){ 1; 2; 3}
+) Với x = 3 => \(\hept{\begin{cases}y+z=3\\y^2+z^2=5\end{cases}\Rightarrow\hept{\begin{cases}y+z=3\\y^2\le5\end{cases}}\Rightarrow\hept{\begin{cases}y+z=3\\y\in\left\{1;2\right\}\end{cases}}}\)
Khi y = 2 => z = 1 ( thỏa mãn)
Khi y = 1 => z = 2 ( loại)
+) Với x = 2 => \(\hept{\begin{cases}y+z=4\\y^2+z^2=10\end{cases}}\)=> Tồn tại 1 trong 2 số y; z lớn hơn 2 => lớn hơn x => loại
+) Với x = 1 => Loại
Vậy nghiệm : ( 3; 2; 1) và các hoán vị của nó: ( 3; 1; 2) ; ( 2; 3; 1) ; ( 2; 1; 3 ) ; ( 1; 2; 3) ; ( 1; 3; 2)
bất phương trình nào dưới đây vô nghiệm:
A. -x2+4x-4≥0 B. x2-3x>0 C. -32+6x-19<0 D. x+5x+9<0
giải chi tiết nha
D.\(x^2+5x+9< 0\)
\(x^2+5x+9=\left(x^2+2x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right)-\left(\dfrac{5}{2}\right)^2+9=\left(x+\dfrac{5}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
Mà \(x^2+5x+9< 0\)
--> pt vô nghiệm