Cho phép chia: x 3 + 9 x 2 + 27 x + 27 : ( x + 3 ) . Tìm khẳng định sai?
A. Đây là phép chia hết
B. Thương của phép chia là: ( x + 3 ) 2
C. Thương của phép chia là: x 2 + 6 x + 9
D. Số dư của phép chia là: x – 3 .
Tìm dư của phép chia x^27+x^9+x^3+x cho đa thức x^2-1
tìm số dư của phép chai x^27 + x^9 + x^3 + x chia cho x^2 + 1
dư \(x^{25}\) à ?? t ko biết đâu nhé xDDD
13 Tìm dư trong dư phép chia x+x^3+x^9+x^27+x^81+x^243 cho x^2-1
gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:
\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)
với x = 1 thì: a + b = 5 (1)
với x = -1 thì: -a + b = -5 (2)
từ (1); (2) => b = 0; a = 5
=> số dư của phép chia là 5x
Gọi Q(x) là thương và ax + b là số dư của phép chia trên, ta có:
x + x3 + x9 + x27 + x81 = (x2 - 1) . Q(x) + ax + b
Với x = 1 thì a + b = 5(1)
Với x = -1 thì -a + b = -5(2)
Từ (1) : (2) => a = 5; b = 0
=> Số dư phép chia là: 5x
Tìm dư của các phép chia
a) x^41 chia cho x^2+1
b)x^27+x^9+x^3+x cho x^2-1
c) x^99+x^55+x^11+x+7 cho x^2+1
Tìm dư của phép chia \(x^{27}+x^9+x^3+x\) cho \(x^2-1\)
tìm dư trong phép chia: \(f\left(x\right)=x^{27}+x^9+x^3+x\) chia cho \(g\left(x\right)=x^2-1\sqrt{2}\)
Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)mà
Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại
Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 .
Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có
\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)
\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)
Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)
Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)
Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\), \(b=0\)
Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)
Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm
Chữ số tận cùng của A là 7 không chia hết cho 3, nhưng A chia hết cho 3 nên trong phép chia của A cho 3 thì số cuối cùng chia cho 3 phải là 27. Vậy chữ số tận cùng của thương trong phép chia A cho 3 là 9, mà 9 x 2 = 18, do đó số A/3 x 0,2 là số có phần thập phân là 8.
Tiên thể kb nha!
Câu 11. Tìm các chữ số x, y biết 413x2y chia hết cho 5 và 9 mà không chia hết cho 2:
A. x = 9, y = 5 B.x = 0, y = 5 C.x = 3, y = 5 D.x = 5, y = 3
Câu 12. Thực hiện phép tính 35. 68 + 68. 65. 4, kết quả là:
A.27 200 B.6800 C.6804 D.20 060
Câu 11. Tìm các chữ số x, y biết 413x2y chia hết cho 5 và 9 mà không chia hết cho 2:
A. x = 9, y = 5 B.x = 0, y = 5 C.x = 3, y = 5 D.x = 5, y = 3
Câu 12. Thực hiện phép tính 35. 68 + 68. 65. 4, kết quả là:
A.27 200 B.6800 C.6804 D.20 060
Cho biết số bị chia, số chia, thương và số dư của một phép chia là 4 số trong các số 2; 3; 9; 27; 81; 243; 567. Tìm số dư của phép chia đó. Trả lời: Số dư của phép chia đó là: a. 9 b. 81 c. 27 d. 2
Tìm phần dư của phép chia đa thức f(x) cho đa thức q(x) trong trường hợp sau:
f(x)=x=x^3+x^9+x^27+x^243 ; q(x)=x-1
Lời giải:
Theo định lý Bê-du về phép chia đa thức, thương của $f(x)$ khi chia cho $q(x)=x-1$ là:
$f(1)=1^3+1^9+1^{27}+1^{243}=4$