Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Huy
Xem chi tiết
Nguyễn Thu Hiền
Xem chi tiết
nguyễn tị thao
Xem chi tiết
doremon
27 tháng 2 2015 lúc 20:58

53n.53n + 5.5\(\le\)1016 : 216

56n + 9 \(\le\)516

6n + 9 \(\le\) 16

6n \(\le\)\(\Rightarrow\)n < 2 \(\Rightarrow\)n =1

物理疾驰
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Yeutoanhoc
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Kaito Kid
Xem chi tiết
Akai Haruma
27 tháng 8 lúc 19:37

Lời giải:
Để $(n+5)(n+6)\vdots 6n$ thì trước tiên $(n+5)(n+6)\vdots n$

$\Rightarrow n^2+11n+30\vdots n$

$\Rightarrow 30\vdots n$

$\Rightarrow n\in\left\{1; 2;3;5;6;10; 15; 30\right\}$

Thử lại vào điều kiện đề thì thấy $n\in\left\{1; 3; 10; 7\right\}$ thỏa mãn.

Linhhhhhh
Xem chi tiết
Luxy Anfia
Xem chi tiết
Lê Song Phương
11 tháng 5 2022 lúc 5:57

Đặt \(\left\{{}\begin{matrix}n-5=a^3\left(1\right)\\n+2=b^3\left(2\right)\end{matrix}\right.\) \(\left(a,b\inℤ;a< b\right)\)

\(\left(1\right)\Leftrightarrow n=a^3+5\)

Thay vào (2), ta có \(a^3+5+2=b^3\Leftrightarrow b^3-a^3=7\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)=7\)

Vì \(a< b\Leftrightarrow b-a>0\), mà \(\left(b-a\right)\left(a^2+ab+b^2\right)=7>0\)\(\Rightarrow a^2+ab+b^2>0\)

Ta chỉ xét 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}b-a=1\\a^2+ab+b^2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+1\\a^2+a\left(a+1\right)+\left(a+1\right)^2=7\end{matrix}\right.\)

Giải phương trình thứ hai, ta được \(a^2+a^2+a+a^2+2a+1=7\)\(\Leftrightarrow3a^2+3a-6=0\)\(\Leftrightarrow a^2+a-2=0\)\(\Leftrightarrow a^2-a+2a-2=0\)\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)=0\)\(\Leftrightarrow\left(a-1\right)\left(a+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-2\end{matrix}\right.\) (nhận)

Với \(a=1\) thì \(b=a+1=1+1=2\) (nhận)  từ đó \(n-5=a^3=1^3=1\Rightarrow n=6\)

Thử lại: \(n+2=6+2=8=2^3=b^3\) (nhận)

TH2: \(\left\{{}\begin{matrix}b-a=7\\a^2+ab+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a+7\\a^2+a\left(a+7\right)+\left(a+7\right)^2=1\end{matrix}\right.\)

Giải phương trình thứ hai, ta được \(a^2+a^2+7a+a^2+14a+49=1\)\(\Leftrightarrow3a^2+21a+48=0\)\(\Leftrightarrow a^2+7a+16=0\)\(\Leftrightarrow4a^2+28a+64=0\)\(\Leftrightarrow\left[\left(2a\right)^2+2.2a.7+7^2\right]+15=0\)\(\Leftrightarrow\left(2a+7\right)^2+15=0\)\(\Leftrightarrow\left(2a+7\right)^2=-15\) (vô lí)

Vậy ta loại TH2

Do đó để \(n-5\) và \(n+2\) đều là lập phương của 1 số nguyên thì \(n=6\)

Zoro Roronoa
Xem chi tiết
Trafalgar Law
22 tháng 3 2016 lúc 10:18

1, Để \(\frac{n+5}{n}\)là số nguyên<=>n+5 chia hết cho n<=>n chia hết cho n và 5 chia hết cho n<=>n thuộc ước của 5={-5;-1;1;5}<=> n=-5;-1;1;5

2,a:5 dư 1<=> a-1 chia hết cho 5 <=> a-1+45 chia hết cho 5 <=> a+44 chia hết cho5

  a:7 dư 5 <=> a-5 chia hết cho 7 <=> a-5 +49 chia hết cho 7 <=> a+44 chia hết cho 7

=> a+44 thuộc BC(5;7)

<=> Ta có: 5=5

                 7=7

<=>BCNN(5;7)=5.7=35

<=>a+44=BC(5;7)=B(35)={70;105;140;175;....}

<=>a={26;61;96;131;.........}

3,    gọi số cần tìm là x

<=> x=26.32=576

ngô thị thanh lam
22 tháng 3 2016 lúc 9:58

1) có 4 số tự nhiên thỏa mãn

phammiahnh
Xem chi tiết
Vũ Minh Anh
Xem chi tiết
Kiệt Nguyễn
26 tháng 1 2021 lúc 18:54

\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)

\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))

* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))

Vậy không tồn tại số nguyên dương n thỏa mãn đề bài

Khách vãng lai đã xóa