cho tam giác ABC có góc A = 90 độ, AB=3cm, AC=4cm, BC=5cm. Tính chiều cao AH.
Cho tam giác ABC vuông tại A, có AB = 4cm, AC = 3cm. Tính chiều cao AH của tam giác ABC.
cho tam giác ABC vuông tại A có AB=3cm,AC=4cm đường AH .a,Tính BC,AH ,b tính góc B ,góc C,c, phân giác của góc A cắt BC tại E .Tình BE,CE
a) Áp dụng ĐL Pytago vào tam giác ABC: BC^2= AB^2+AC^2= 3^2+4^2=25 =>> BC=5
Áp dụng hệ thức lượng: AH.BC=AB.AC => AH.5=3.4 => AH= 2,4
b) Áp dụng tỉ số lượng giác: sinB= AC/BC= 4/5= 0,8 => góc B= 59 độ
Góc C= 180-90-59= 31 độ
c) Áp dụng Pytago vào tam giác BHA: BH=1,8 (tự tính)
Góc BAH= 180-90-59= 31 độ
Góc BAE= 90/2= 45 độ (phân giác)
Góc HAE= 45 - 31= 14 độ
HE= tanHAE. AH= tan14. 2,4= 0,53
BE= HE+ BH= 0,53 + 1,8 = 2,33
CE= BC - BE= 5-2,33= 2,67
MẤY BÀI NÀY CHỈ CẦN THUỘC CÔNG THỨC LÀ LÀM ĐƯỢC HẾT .-. CHỊU KHÓ HỌC THUỘC ĐI RỒI MẤY BÀI NÀY SẼ TRỞ NÊN ĐƠN GIẢN ĐẾN BẤT NGỜ :))) ĐÂY LÀ KIẾN THỨC CŨ KO BIẾT LÀM ĐÚNG KO NỮA :33 HÊN XUI NHÁ!!
CỐ LÊN BABEEE <3
Hình tam giác ABC có A la góc vuông và chu vi là 120 cm. Biết độ dài cạnh AC bằng 75 % độ dài cạnh AB, độ dài cạnh BC bằng 5/7 tổng độ dài cạnh AB và AC. Hãy tính chiều cao AH ứng với cạnh BC của tam giác ABC.
Nhớ vẽ hình và giải chi tiết nhé !
75% = 3/4
Tổng độ dài AB và AC là: 3 + 4 = 7 (phần)
Giá trị 1 phần: 120 : ( 3 + 4 + 5) = 10 (cm)
Cạnh AC: 10 x 3 = 30 (cm)
Cạnh AB: 10 x 4 = 40 (cm)
Cạnh BC: 10 x 5 = 50 ( cm)
DT tam giác ABC:( 30 x 40): 2= 60 (cm2)
Chiều cao tương ứng của cạnh BC: 60 x 2 : 50 = 24
Học Tốt ^-^
cho tam giác ABC có AB=AC=5cm,BC=8cm.Kẻ AH vuông góc với BC
a)CM HB=HC và góc BAH = góc CAH
b) Tính độ dài AH
c) Kẻ HD vuong góc với AB; HE vuông góc với BC . CMR tam giác HDE cân
a, tam giác ABH và tam giác CAH có:
AB = AC
AH: cạnh chung
góc H1 = góc H2 (=90*)
=> tam giác ABH = tam giác CAH
=> HB = HC (cạnh tương ứng )
=> góc BAH = góc CAH ( góc tương ứng)
ko chắc đúng đâu
b, bn tự tính nhé !!
c, câu này sai đề nhé bn !! AH vuông góc BC thì H thuộc BC, nhưg HE sao lại vuông góc với BC?
ờ ..mik ghi lộn đề...thk nha mik bik làm r
cho tam giác cân ABC có AB=AC=5cm , BC=8cm . Kẻ AH vuông góc vs BC (H thuộc BC)
a/ CM: HB=HC
b/ tính độ dài AH
c/ kẻ HD vuông góc vs AB ( D thuộc AB),kẻ HE vuông góc vs AC (E thuộc AC) . CHỨNG MINH tam giác HDE là tam giác cân .
a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...
Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC
=>HB=HC
b) Ta có HB+HC=BC
=>HB=HC=BC/2=8/2=4cm
Ap dụng định lí Py-ta-go vào tam giác BAH ta có
AH2+BH2=AB2
AH2=AB2-BH2
AH2= 52-42
AH2=25-16=9
=>AH=3
C)Xét tam giác vuông BDH và CEH ta có
HB=HC(theo câu a)
Góc B=C(Vì tam giác ABC cân ở A)
=>tam giác BDH=CEH(ch-gn)
=>HD=HE(tương ứng)
Vậy tam giác HDE có HD=HE nên cân ở H
cho tam giác ABC có góc A = \(90^0\), AH vuông góc với BC, AB= 5cm, AC= 12 cm.
a,tính BC, AH
b, tia phân giác góc ABC cắt AH tại E cắt AC tại F. Chứng minh tam giác AEF cân.
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=5^2+12^2\)
\(\Leftrightarrow BC^2=169\)
\(\Leftrightarrow BC=13\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác ta có : \(AB.AC=BC.AH\)
\(\Leftrightarrow AH=\frac{5.12}{13}=\frac{60}{13}\left(cm\right)\)
b) Áp dụng hệ thức lượng ta có \(AB^2=BH.BC\Leftrightarrow BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)
Do BE là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AE}{HE}=\frac{AB}{BH}=5\div\frac{25}{13}=\frac{13}{5}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AE}{13}=\frac{HE}{5}=\frac{AE+HE}{13+5}=\frac{AH}{18}=\frac{60}{13}\div18=\frac{10}{39}\)
\(\Rightarrow AE=\frac{10}{39}\times13=\frac{10}{3}\left(cm\right)\)
Mặt khác BF là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AF}{FC}=\frac{AB}{BC}=\frac{5}{13}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AF}{5}=\frac{FC}{13}=\frac{AF+FC}{5+13}=\frac{AC}{18}=\frac{2}{3}\)
\(\Rightarrow AF=\frac{2}{3}\times5=\frac{10}{3}\left(cm\right)\)
Xét \(\Delta AEF\)có \(AE=AF\left(=\frac{10}{3}cm\right)\)
\(\Rightarrow\Delta AEF\)cân tại A ( đpcm )
Vậy ...
cho tam giác ABC có góc A = \(90^0\), AH vuông góc với BC, AB= 5cm, AC= 12 cm.
a,tính BC, AH
b, tia phân giác góc ABC cắt AH tại E cắt AC tại F. Chứng minh tam giác AEF cân.
hình,
~~~
a/ A/dụng pitago vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2=5^2+12^2=169\Rightarrow BC=13\left(cm\right)\)
Xét ΔHBA và ΔABC có:
\(\left\{{}\begin{matrix}\widehat{H}=\widehat{A}=90^o\left(gt\right)\\\widehat{B}:chung\end{matrix}\right.\)
=>ΔHBA ~ ΔABC (g.g)
=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\cdot12}{13}\approx4,6\left(cm\right)\)
b/ Xét ΔABF và ΔHBE có:
\(\left\{{}\begin{matrix}\widehat{A}=\widehat{H}=90^o\left(gt\right)\\\widehat{B_1}=\widehat{B_2}\left(gt\right)\end{matrix}\right.\)
=> ΔABF ~ ΔHBE (g.g)
=> \(\widehat{F_1}=\widehat{E_2}\) (2 góc tương ứng)
mặt khác: \(\widehat{E_1}=\widehat{E_2}\)(đối đỉnh)
=> \(\widehat{F_1}=\widehat{E_1}\)
=> ΔAEF cân tại A (đpcm)
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm ,AH là đường cao
a)tính độ dai cạnh BC
b)Chứng minh hai tam giác HAB và HCA đồng dạng
c)TRên cạnh BC lấy điểm E sao cho CE=4cm. Chứng miinh BE.BE=BH.BC
d) Tia phân giác của góc ABC cắt cạnh AC tại D. Tính diện tích tam giác CED
cho tam giác cân ABC có AB=AC=5cm , BC=8cm . Kẻ AH vuông góc vs BC (H thuộc BC)
a/ CM: HB=HC
b/ tính độ dài AH
c/ kẻ HD vuông góc vs AB ( D thuộc AB),kẻ HE vuông góc vs AC (E thuộc AC) . CHỨNG MINH tam giác HDE là tam giác cân .
d/So sánh HD và HC
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=) HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=) HD<HC
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=> HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=> HD<HC
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH ^ 2 + BH mũ 2 = AB ^ 2 ( pitago )
AH ^ 2 + 4 mũ 2 = 5 ^ 2
AH ^ 2 + 16 = 25
AH ^ 2 = 25 - 16
AH ^ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cmd. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=) HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=) HD<HC