Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đăng Nhật Trường
Xem chi tiết
Ngô Thị Yến Nhi
Xem chi tiết
Đặng Trúc Mai
17 tháng 1 2018 lúc 21:16

B=(x-47)-(x+59-81)+(35-x)

B=x-47-x-59+81+35-x

B=10-x

thay x=3 vào bthức ta được;

B=10-13

B=-3

Trần Văn Thành
17 tháng 1 2018 lúc 21:17

Ngô Thị Yến Nhi:

B = (x - 47) - (x + 59 - 81) + (35 - x)

Thay x = 13 vào biểu thức B, ta có:

B = (13 - 47) - (13 + 59 - 81) + (35 - 13)

B =    -34      -         (-9)          +     22

B =             -25                       +     22

B =                             -3

Vậy B = (-3)

:)

Nguyễn Xuân Anh
17 tháng 1 2018 lúc 21:22

Ta có:

B = (x - 47) - (x + 59 - 81) + (35 - x)

    = x- 47 - x-59 +81 +35 -x

    = -x

    = -13

Trần Hoàng Anh
Xem chi tiết
YangSu
17 tháng 6 2023 lúc 14:53

\(P=A.B=\dfrac{\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Ta có : \(\left|P\right|-P=0\) \(\Leftrightarrow\left|P\right|=P\Leftrightarrow\left|\dfrac{\sqrt{x}}{\sqrt{x}-2}\right|=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(+TH_1:x\ge0\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) (luôn đúng)

\(+TH_2:x< 0\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}=0\)

\(\Leftrightarrow-2.\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)=0\)

\(\Leftrightarrow x=0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 6 2019 lúc 16:59

a) x = -11

b) x = 2

c) x = -5

d) x = 5

e) x = 3 hoặc x = 7        

f) x = -1 hoặc x = 9

LE THANH HUNG
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 6 2019 lúc 3:36

LE THANH HUNG
Xem chi tiết
Tạ Lương Minh Hoàng
22 tháng 9 2015 lúc 21:00

a)4x5=125+3

4x5=128

x5=128:4

x5=32

x5=25

Vậy x=2

 

 

illumina
Xem chi tiết
Gia Huy
19 tháng 6 2023 lúc 12:54

\(P=A:B=\dfrac{1-\sqrt{x}}{\sqrt{x}-2}:\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{1-\sqrt{x}}{2\sqrt{x}}\)

Có: \(\left|P+1\right|< 3P\left(ĐK:x>0\right)\)

\(\Leftrightarrow\left|\dfrac{1-\sqrt{x}}{2\sqrt{x}}+1\right|< 3.\dfrac{1-\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{1-\sqrt{x}+2\sqrt{x}}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\)

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\) nên:

\(\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\dfrac{\sqrt{x}+1-3+3\sqrt{x}}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{4\sqrt{x}-2}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}}< 0\\ \Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\2\sqrt{x}-1< 0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{1}{4}\)

Trần Hoàng Anh
Xem chi tiết

c,M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) :  \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) \(\times\) \(\dfrac{\sqrt{x}+5}{\sqrt{x}+3}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\) = \(\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}\)

 M = 1  - \(\dfrac{7}{\sqrt{x}+3}\) 

 M \(\in\) Z ⇔ 7 ⋮ \(\sqrt{x}\) + 3 vì \(\sqrt{x}\) ≥ 0 ⇒ \(\sqrt{x}\) + 3 ≥ 3 ⇒ 0< \(\dfrac{7}{\sqrt{x}+3}\) ≤ \(\dfrac{7}{3}\)

⇒ M Đạt giá trị nguyên lớn nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) đạt giá trị nguyên nhỏ nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) = 1 ⇔ \(\sqrt{x}\) + 3  = 7 ⇔ \(\sqrt{x}\) = 4 ⇔ \(x\) = 16 

Mnguyên(max)  = 1 - 1 = 0 xảy ra khi \(x\) = 16