Tìm giá trị lớn nhất của các biểu thức sau A = 12a – 4 a 2 + 3.
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2
Tìm giá trị nhỏ nhất của các biểu thức sau:
a) A=1/2+|x+3/4|
b) B=2|2x-4/3|-1
Tìm giá trị lớn nhất của các biểu thức sau:
a) A=1-2|x+4|
b) B=11/4-3|x-5|
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
A( Tìm giá trị nhỏ nhất của các biểu thức sau : A=x^2 - 2x + 19.B) Tìm giá trị lớn nhất của các biểu thức sau : B= -x^2 - 5x + 20
Cho a, b, c là các số thực không âm thỏa mãn a+b+c=3. Tìm giá trị lớn nhất của biểu thức \(K = \sqrt{12a+(b-c)^2} + \sqrt{12b+(a-c)^2} + \sqrt{12c+(a-b)^2}\)
https://h.vn/hoi-dap/question/702421.html
https://h.vn/hoi-dap/question/702421.html
https://h.vn/hoi-dap/question/702421.html
Ta có:
\(\sqrt{12a+\left(b-c\right)^2}=\sqrt{4a\left(a+b+c\right)+\left(b-c\right)^2}\)
\(=\sqrt{4a^2+4ab+4ac+b^2-2bc+c^2}\)
\(=\sqrt{\left(2a+b+c\right)^2-4bc}\)
\(\le\sqrt{\left(2a+b+c\right)^2}=2a+b+c\)
Khi đó \(K\le4\left(a+b+c\right)=12\)
Dấu "=" xảy ra tại \(a=0;b=0;c=3\) và các hoán vị.
A( Tìm giá trị nhỏ nhất của các biểu thức sau : A=x^2 - 2x + 19.
B) Tìm giá trị lớn nhất của các biểu thức sau : B= -x^2 - 5x + 20
A)Tìm các giá trị nguyên của x để các biểu thức sau co giá trị lớn nhất:
1) A=14-x/4-x
2) B=1/7-x
3) C=27-2x/12-x
B) Tìm các giá trị nguyên của x để cac biểu thức sau có giá trị nhỏ nhất:
1) A=1/x-3
2) B=7-x/x-5
3) C=5x-19/x-4
a,Tìm giá trị lớn nhất của các biểu thức sau:
A=|x-5|+3
B=|x+2|-4
C=|x+5|-1
b,Tìm giá trị nhỏ nhất của các biểu thức sau:
M=5-|x+2|
N=5-|x+2|
P=9-|2x-6|
Tìm giá trị lớn nhất của các biểu thức sau:
a) A= - |x+3/4| -3
b) B= 2-(x+5/6)^2
a) \(A=-\left|x+\frac{3}{4}\right|-3\)
Vì \(\left|x+\frac{3}{4}\right|\ge0\Rightarrow-\left|x+\frac{3}{4}\right|\le0\Rightarrow A=-\left|x+\frac{3}{4}\right|-3\le-3\)
=>\(A_{max}=-3\)=> \(\left|x+\frac{3}{4}\right|=0\Rightarrow x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy Amax = -3 khi x=-3/4
b) \(B=2-\left(x+\frac{5}{6}\right)^2\)
Vì \(\left(x+\frac{5}{6}\right)^2\ge0\Rightarrow B=2-\left(x+\frac{5}{6}\right)^2\le2\)
=>\(B_{max}=2\Rightarrow\left(x+\frac{5}{6}\right)^2=0\Rightarrow x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Bmax=2 khi x=-5/6
tìm giá trị lớn nhất của các biểu thức sau
a. A = 10-2(y^2-25)^4
ta có: (y^2 -25) ^4 >= 0
suy ra -2*(y^2 -25) ^4 <=0
suy ra -2*(y^2 -25) ^4+ 10 <=10
vậy GTLN là 10 khi y^2 =25 <=> y=+-5
\(A=10-2\left(y^2-25\right)^4\)
\(=10-2\left[\left(y^2-25\right)^2\right]^2\)
Ta có : \(\left(y^2-25\right)^2\ge0\forall y\)
=> \(\left[\left(y^2-25\right)^2\right]^2\ge0\forall y\)
=> \(-2\left[\left(y^2-25\right)^2\right]^2\le0\forall y\)
=> \(10-2\left[\left(y^2-25\right)^2\right]^2\le10\)
Dấu = xảy ra <=> \(10-2\left[\left(y^2-25\right)^2\right]^2=10\)
<=> \(y^2-25=0\)
<=> \(y^2=25\)
<=> \(\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Vậy MaxA = 10 với y = \(\pm\)5
\(A=10-2\left(y^2-25\right)^4\)
Ta có \(\left(y^2-25\right)^4\ge0\forall x\Rightarrow2\left(y^2-25\right)^4\ge10\)
\(\Rightarrow10-2\left(y^2-25\right)^4\le10\)
\(\Rightarrow B\le10\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(y^2-25\right)^4=0\)
\(\Leftrightarrow y^2-25=0\)
\(\Leftrightarrow\left(y-5\right)\left(y+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Vậy GTLN của B=10 đạt được khi x=5;x=-5