Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thức Nguyễn Văn
Xem chi tiết
Nguyễn Tuấn
10 tháng 3 2016 lúc 19:55

mối ràng buộc giữa a,b,c vì nếu a,b,c thuộc R và ko có mối liên hệ a,b,c thì ko có GTNN của nó 
Đặt A=ab/(a+b) + bc/(b+c) + ac/(a+c) 
Trước hết ta xét bất đẳng thức sau với x,y >0 
(x+y)≥2√xy <=> (x+y)² ≥ 4xy <=> (x+y)≥(4xy)/(x+y) 
ngịch đảo 2 vế ta có 1/(x+y) ≥ ¼(1/x+1/y) 
Áp dụng cho bài toán ta có 
ab/(a+b)≥¼ ab(1/a+1/b)=¼(a+b) 
bc/(b+c) ≥¼(c+d) 
ac/(a+c)≥¼(a+c) 
Cộng 2 vế ta có A ≥¼(a+b+c+d+a+c)=½(a+b+c) 
Nếu bạn cho a+b+c=m thì ta có mình A=m/2 

phan tuấn anh
Xem chi tiết
phan tuấn anh
Xem chi tiết
oát đờ
Xem chi tiết
Big City Boy
Xem chi tiết
Etermintrude💫
9 tháng 3 2021 lúc 20:08

undefined

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 20:14

\(\Leftrightarrow ab\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+bc\left(\dfrac{1}{a+c}-\dfrac{1}{a+b}\right)+ca\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)=0\)

\(\Leftrightarrow\dfrac{ab\left(a-b\right)}{\left(b+c\right)\left(a+c\right)}+\dfrac{bc\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{ca\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}=0\)

\(\Leftrightarrow\dfrac{ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\) hay tam giác cân

Cao Thanh Nga
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Cao Thanh Nga
Xem chi tiết