Tính \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
Tính\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
Tính A =\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
Tính:
A=\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.....+\frac{1}{1+2+3+....+99}+\frac{1}{50}\)
tính A=\(\frac{1}{1+2}+\frac{1}{1+2+3}+.......+\frac{1}{1+2+3+4+......+99}+\frac{1}{50}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
\(=\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(99+1\right).99}{2}}+\frac{1}{50}\)
\(=\frac{2}{\left(2+1\right).2}+\frac{2}{\left(3+1\right).3}+...+\frac{2}{\left(99+1\right).99}+\frac{1}{50}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}=2.\left(\frac{50}{100}-\frac{1}{100}\right)+\frac{1}{50}=2.\frac{49}{100}+\frac{1}{50}\)
\(=\frac{49}{50}+\frac{1}{50}=1\)
Ket qua la 1 con neu muon xem cach giai thi vao chtt
Đặt \(B=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}\)
\(B=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\)
\(\Rightarrow B=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
\(\Rightarrow B=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow B=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow B=2\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(\Rightarrow B=2.\frac{49}{100}\)
\(\Rightarrow B=\frac{49}{50}\)
\(\Rightarrow A=B+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
Tính
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)= ????
GHI CÁCH GIẢI HỘ MIK
1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99+1/50
=1/(2+1).2:2+1/(3+1).3:2+1/(4+1).4:2+...+1/(99+1).99:2+1/50
=2/2.3+2/3.4+2/4.5+...+2/99.100+1/50
=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)+1/50
=2.49/100+1/50=49/50+1/50=1
tick nha ^^
Tính và so sánh: \(S=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}...+\frac{99}{49^2.50^2}\)\(T=\frac{1}{2^2-1^2}+\frac{1}{3^2-1^2}+\frac{1}{4^2-1^2}+...+\frac{1}{50^2-1^2}\)
\(S=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{99}{49^2\cdot50^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{49^2}-\frac{1}{50^2}\)
\(=1-\frac{1}{50^2}=\frac{2499}{2500}\)
\(T=\frac{1}{\left(2-1\right)\left(2+1\right)}+\frac{1}{\left(3-1\right)\left(3+1\right)}+...+\frac{1}{\left(50-1\right)\left(50+1\right)}\)
\(=\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\cdot\left(1+\frac{1}{2}-\frac{1}{51}\right)=\frac{151}{204}\)
Vì \(\frac{2499}{2500}>\frac{151}{204}\)nên S>T
JOKER_Võ Văn Quốc, T = \(\frac{1}{2}.\left(1-\frac{1}{51}+\frac{1}{2}-\frac{1}{50}\right)\)mới đúng
Sẽ dễ hơn nếu bạn chia ra 2 vế \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)và \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{48+50}\)
A=\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+....+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}}\)
B=\(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-....-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+....+\frac{1}{500}}\)
Cho \(P=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+..+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}}\)và \(Q=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-..-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+..+\frac{1}{500}}\)
a)Tính P,Q b) Tính tỉ số % của P và 3Q
cho \(M=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\) và \(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
Tính tỉ số M với N