Tìm đồng dư của 2^99 và 100
Tìm số dư của số 1+2+3+...98+99+100 khi chia cho 9
\(1+2+3+...+98+99+100\)
\(=\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)
\(=\frac{101.100}{2}=5050\)
Mà 5050 chia 9 dư 1
CHO A=2^1+2^2+2^3+. . . . .2^99+2^100.Chứng minh rằng A ko chia hết cho 7 và tìm số dư của a khi chia cho 7
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
TÌm số dư khi chia số sau đây cho 100:2^99+3^99
Cho S=3^99-3^98+3^97-...+3^3-3^2+3-1. Tính S và tìm số dư khi chia 3^100 cho 4
S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)
\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)
Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)
Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20
\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4
\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1
bài 1 CMR:
a,(1991^1997-1997^1996) chia hết cho 10
b,(2^9+2^99) chia hết cho 100
bài 2 CMR
a,nếu a đồng dư1(mod2)thì a^2 đồng dư 1(mod8)
b, nếu a đồng dư 1(mod3) thì a^3 đồng dư 1(mod9)
bài này vượt quá giới hạn của ta rồi
Câu 1 cách làm:
Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính
2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)
M= 1+3+3^2+3^3+...+3^98+3^99+3^100. tìm số dư của M khi chia cho 13?
tìm số dư khi chia tổng 2^1+2^2+2^3+...+2^99+2^100 cho 7
cho s=1+2+2^2+2^3+...+2^100 tìm x biết s+1=2^x~7
a) Cho đa thức f(x) = x^100 + x^99 + ... + x^2 + x + 1 . tìm dư của phép chia đa thức f(x) cho đa thức x^2 -1
b) Tìm đa thức f(x) biết rằng f(x) chia cho x-2 thì dư 2, f(x) chia cho x-3 thì dư 7 , f(x) chia cho x^5 - 5x + 6 thì đc thương là 1 - x^2 và còn dư
Huyền hỏi 2 bài liên tiếp à viết nhanh thế
Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?
1- 3 + 3^2 - 3^3 + 3^4 - ... + 3^98 - 3^99
Tìm số dư của 3^100 khi chia cho 4
gọi tích là s ta có
S = 1- 3 + 3^2 - 3^3 + 3^4 - ... + 3^98 - 3^99
3S=3-3^2+3^3-3^4+......3^99-3^100
==> 3S-S=2S=1-3^100
S=\(\frac{1-3\text{^}100}{2}\)