Tìm y, biết :
\(y3+3y=12\times11\)
Các số y3 và 3y không phải là y\(\times\)3 và 3\(\times\)y
Tìm các số nguyên x, y, biết:
a) x 4 = y 3 và x + y = 14
b) x − 3 y − 2 = 3 2 và x - y = 4
c) x 8 = y 12 và 2x + 3y = 13
Tìm x, biết:
a/ x 2 = y 3 và xy = 54
b / x − 1 2 = y − 2 3 = z − 3 4 và 2x + 3y –z = 50
c/ 3x = 2y; 7y = 5z và x – y + z = 32
Tìm y biết:
y3+3y=12*11
y3 + 3y=1 32
y (3+3) = 132
yx 3 =132
y = 132: 3
y = 44
y3+ 3y=12 x11
y 3+3 y=132
y x10 +3+ 30 +y x1=132
y x( 10+1)=132-3-30
yx11=99
y=99:11
y=9
Tính giá trị của biểu thức:
N= \(\dfrac{x-y}{x+3y}\) biết \(\dfrac{x}{y}=\dfrac{1}{3}\)
M= (x + y)2 - y3(x + y) + (x2 - y3) + 3 biết x + y + 1 = 0
a) \(\dfrac{x}{y}=\dfrac{1}{3}\Rightarrow y=3x\). Thay vào biểu thức N, ta có: \(N=\dfrac{x-3x}{x+9x}=\dfrac{-2x}{10x}=-\dfrac{1}{5}\)
b) \(x+y+1=0\Leftrightarrow x+y=-1\). Thay vào biểu thức M, ta có: \(M=\left(-1\right)^2-y^3\left(-1\right)+x^2-y^3+3\) \(=1+y^3+x^2-y^3+3\) \(=x^2+4\)
Xác định các hệ số a, b, c biết đẳng thức sau đúng với mọi y:
(a + by + cy2)(y + 3) = y3 + 2y2 - 3y
Để xác định các hệ số a, b, c, ta cần giải phương trình sau: (a + by + cy^2)(y + 3) = y^3 + 2y^2 - 3y Mở ngoặc và sắp xếp các thành phần theo bậc của y, ta có: ay^3 + (3a + by^2) + (3b + cy)y + 3c = y^3 + 2y^2 - 3y So sánh các hệ số của các bậc của y, ta có hệ phương trình sau: a = 1 3a + b = 2 3b + c = -3 3c = 0 Từ hệ phương trình trên, ta có: a = 1 b = 2 - 3a = 2 - 3(1) = -1 c = -3 - 3b = -3 - 3(-1) = 0 Vậy, các hệ số a, b, c là: a = 1, b = -1, c = 0.
G=3(x2+y2)-(x3+y3)+1 biết x+y=2
H=8x3-12x2y+16xy2-y3+12x2-12xy+3y2+6x-3y+11 với 2x-y=9
Tính bằng hằng đẳng thức
Để tính bằng hằng đẳng thức, ta sẽ thay thế giá trị của x + y và 2x - y vào biểu thức G và H. Thay x + y = 2 vào biểu thức G: G = 3(x^2 + y^2) - (x^3 + y^3) + 1 = 3(2^2) - (2^3) + 1 = 12 - 8 + 1 = 5 Thay 2x - y =9 vào biểu thức
H: H =8x^3-12x^2y+16xy^2-y^3+12x^2-12xy+3y^2+6x-3y+11 =8(9)^{33}-12(9)^{22}+(16)(9)(9)^22-(9)^33+(12)(9)^22-(12)(9)(9)+(32)+(81)-(27)+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58720) Vậy kết quả là G=5 và H=58720.
Cho phương trình 2 y 2 − 3 y + 7 − m = − 2 y 2 + 6 − y 3 . Tìm giá trị của tham số m để phương trình nhận y=-3 là nghiệm.
a, Cho x+3y=16 Tính
P= x^3+27y^3+9xy(x+3y)+36
b, Cho 4x+y=12. Tính
Q=64x^3+y3+12xy(4x+y)
c, Cho 3x-y=21 Tính
N=27x^3-y^3-9xy(3x-y)-18x+6y-11
Số nghiệm của hệ phương trình x 3 = x + 3 y y 3 = y + 3 x là:
A. 2
B. 3
C. 1
D. 4