Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Đặng Hữu Hiếu
28 tháng 5 2018 lúc 8:58

a=x²+y², b=m²+n² với x, y, m, n là số tự nhiên khác 0.

Ta có ab=(x²+y²)(m²+n²)=x²m²+x²n²+y²m²+y²n²

=x²m²+y²n²+2xymn+x²n²+y²m²-2xymn

=(xm+yn)²+(xn+ym)² (đpcm)

Me
Xem chi tiết
Cao Phan Tuấn Anh
Xem chi tiết
Cao Phan Tuấn Anh
25 tháng 12 2015 lúc 21:34

thôi cái kiểu tic đó đi trừ mik thôi

Nguyễn Mạnh Trung
Xem chi tiết
Phạm Hữu Nam chuyên Đại...
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
3 tháng 8 2023 lúc 10:20

\(n=a^2+b^2\)

\(\Rightarrow n^2=\left(a^2+b^2\right)^2-4a^2b^2+4a^2b^2=\)

\(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)+\left(2ab\right)^2=\)

\(=\left(a-b\right)^2\left(a+b\right)^2+\left(2ab\right)^2=\)

\(=\left[\left(a-b\right)\left(a+b\right)\right]^2+\left(2ab\right)^2=\)

\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)

Phương Anh
Xem chi tiết
Minh Hiếu
13 tháng 10 2021 lúc 15:33

Giả sử \(2n=a^2+b^2\)(a,b∈N).

⇒ \(n=\dfrac{a^2+b^2}{2}=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\)

Vì \(a^2+b^2\) là số chẵn nên a và b cùng tính chẵn, lẻ.

⇒ \(\dfrac{a+b}{2}\)  và \(\dfrac{a-b}{2}\) đều là số nguyên

Nguyễn Thị Thúy Hường
Xem chi tiết