Cho p là số nguyên tố >5 ; 2p+1 cũng là số nguyên tố. Chứng minh rằng 4p+1 và 4p-1 là hợp số
Bài 1 : Tìm số nguyên tố p để p^2+41 là số nguyên tố
Bài2: Tìm số nguyên tố p để p^2+4vàp^2-4 đều là số nguyên tố
Bài3: Tổng 5 số nguyên tố là 142 . Tìm số nguyên tố nhỏ nhất trong 5 số trên
Bài4: tìm 2 số nguyên tố sao cho tổng và tích của chúng đều là số nguyên tố
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây
cho p là số nguyên tố lớn hơn 2 . chứng minh 3p + 5 là hợp số
cho p là số nguyên tố lớn hơn 2. chứng minh 5p + 3 là hợp số
cho p là số nguyên tố lớn hơn 2 . chưng mih 7p + 5 là hợp số
cho p và p + 4 là các số nguyên tố lớn hơn 3 nhân p+ 8 là hợp số
Cho p là số nguyên tố lớn hơn 3
a/ p+8 là số nguyên tố. chứng tỏ p+16 là hợp số
b/p+14 là số nguyên tố. chứng tỏ 2p+5 la hợp số
c/2p+11 là số nguyên tố. chứng tỏ 4p+5 là hợp số
giúp tớ chứng minh đi. chỉ mỗi câu trả lời ai hiểu
xin lỗi bạn nhìn đề ko là đã hk hiểu rồi
Cho p>=5 là số nguyên tố sao cho 2p+1 cũng là số nguyên tố . CMR p+1 chia hết cho 6 và 2.p^2+1 không phải là nguyên tố
Tìm số nguyên tố p sao cho :
a,3p+5 là số nguyên tố
b,p+1 và p+8 là số nguyên tố
cho p là số nguyên tố lớn hơn 5 thỏa mãn 2p+1 là số nguyên tố cmr p.(p+5)+31 là hợp số
p là số nguyên tố lớn hơn 5 nên p không chia hết cho 3
=> p = 3k+1 ; 3k+ 2 ( k \(\in\) N )
Nếu p=3k+1
=> 2p+1 = 2(3k+1)+1=6k+3 \(⋮\) 3 --> vô lí
=> p=3k+2
=> p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+14+31=9k^2+27k+45 \(⋮\) 3
=> p(p+5)+31 là hợp số (đpcm )
Tìm số nguyên tố P, sao cho:
a)P+2 và P+4 là số nguyên tố
b)P+2 và P+6 là số nguyên tố
c)P+3 và P+5 là số nguyên tố
Tìm số nguyên tố p sao cho:
a) p+2 và p+4 là số nguyên tố
b) p+2 và p+6 là số nguyên tố
c) p+3 và p+5 là số nguyên tố
cho p lớn hơn bằng 5 là số nguyên tố sao cho 2p+1 cùng là số nguyên tố. cmr p+1 chia hết cho 6 và 2p2 +1 ko phải là số nguyên tố
Tìm số nguyên tố p sao cho p; p+4;p+12 cũng là số nguyên tố
Cho p và \(p^2\)+2 là số nguyên tố . Chứng minh \(^{p^3}\)+2 cũng là số nguyên tố
Cho p là số nguyên tố lớn hơn 3. Chứng minh (p+5).(p+7) chia hết cho 24
P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8
( vì k(k+1) chia hết cho 2 với mọi k thuộc n)
P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2
. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N
. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N
(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24
cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24
các bạn giải hộ mình vs