Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CHIEN DAM
Xem chi tiết
ha kim ngoc
Xem chi tiết
Thanh Tùng DZ
Xem chi tiết
Con Chim 7 Màu
16 tháng 4 2019 lúc 10:46

2.\(P=\frac{x+1}{2x+5}+\frac{x+2}{2x+4}+\frac{x+3}{2x+3}\)

        \(=\frac{x+1}{2x+5}+1+\frac{x+2}{2x+4}+1+\frac{x+3}{2x+3}+1-3\)

          \(=\frac{3x+6}{2x+5}+\frac{3x+6}{2x+4}+\frac{3x+6}{2x+3}-3\)

           \(=\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\)

Áp dụng BĐT Cô-si ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân vế với vế của 3 BĐT trên ta được:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\)

Áp dụng BĐT \(\left(1\right)\)ta được:

\(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\ge\frac{9}{6x+12}\)

\(\Leftrightarrow\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\ge3\left(x+2\right).\frac{9}{6\left(x+2\right)}-3\)

\(\Leftrightarrow P\ge\frac{3}{2}\left(đpcm\right)\)

nguyen thi quynh huong
Xem chi tiết
Cấn Ngọc Minh
Xem chi tiết
Cặp mắt xanh
7 tháng 3 2019 lúc 15:41

Bài 1:

   \(^{n^2+15}\)là số chính phương nên đặt \(n^2+15=a^2\left(a\in N\right)\)

\(\Rightarrow n^2-a^2=-15\Rightarrow n^2-an+an-a^2=-15\Rightarrow\left(n^2-an\right)+\left(an-a^2\right)=-15\)

\(\Rightarrow n\left(n-a\right)+a\left(n-a\right)=-15\Rightarrow\left(n+a\right)\left(n-a\right)=-15\)

Vì \(a,n\in N\Rightarrow n-a\le n+a\)

Xét các  trường hợp, bài toán đưa về dạng tổng-hiệu:

 TH1:\(\hept{\begin{cases}n-a=-1\\n+a=15\end{cases}\Rightarrow\left(n,a\right)=\left(8,7\right)}\Rightarrow n=8\)

TH2:\(\hept{\begin{cases}n-a=-3\\n+a=5\end{cases}\Rightarrow n=1}\)

TH3:\(\hept{\begin{cases}n-a=-5\\n+a=3\end{cases}\Rightarrow n=-1\notin N\Rightarrow}\)loại

TH4\(\hept{\begin{cases}n-a=-15\\n+a=1\end{cases}\Rightarrow n=-7\notin N\Rightarrow}\)loại

2 bài còn lại dễ ,bạn tự làm nhé

Cấn Ngọc Minh
7 tháng 3 2019 lúc 17:43

Làm đầy đủ minhg k cho , và đang rất cần gấp

Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
30 tháng 11 2016 lúc 8:25

giúp e vs các a cj soyeon_Tiểubàng giải

Phương An

Hoàng Lê Bảo Ngọc

Silver bullet

Nguyễn Huy Tú

Nguyễn Như Nam

Hoàng Tuấn Đăng

Nguyễn Trần Thành Đạt

Nguyễn Huy Thắng

Võ Đông Anh Tuấn

Nguyễn Đức Trường
Xem chi tiết
Libi Cute
24 tháng 10 2017 lúc 17:37

mk ko bt 123

giang nguyen
24 tháng 10 2017 lúc 18:02

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1

a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*

=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

b) tương tự ta có \(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)

\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

bài 2 chịu

Hà Minh Hiếu
25 tháng 10 2017 lúc 6:35

Bài 2:

=> \(\frac{1}{\left[a.b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Do a,b,c là các số nguyên tố khác nhau

=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)

=> đpcm

Demngayxaem
Xem chi tiết
doan ngoc mai
Xem chi tiết
Đức Nguyễn Ngọc
31 tháng 5 2016 lúc 16:10

P=19/8

doan ngoc mai
31 tháng 5 2016 lúc 20:24

giải rõ ra mới biết

l҉o҉n҉g҉ d҉z҉
26 tháng 6 2021 lúc 10:42

*số thực dương

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x+y+z}=\frac{\frac{49}{16}}{1}=\frac{49}{16}\)

Đẳng thức xảy ra <=> \(\frac{\frac{1}{4}}{x}=\frac{\frac{1}{2}}{y}=\frac{1}{z}=\frac{\frac{1}{4}+\frac{1}{2}+1}{x+y+z}=\frac{\frac{7}{4}}{1}=\frac{7}{4}\Rightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

Vậy ...

Khách vãng lai đã xóa