Tìm x, y, p \(\in\) N* (p là số nghuyên tố)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{p}\)
với p là 1 số nguyên tố tìm nghiệm nguyên (x;y) của phương trình
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{p}\)
1. Tìm x, y, z là số tự nhiên khác 0 sao cho:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{8}\)
1. tìm n thuộc N* để n3k+2 + n3k+1 + 1 là số nguyên tố
2. với x thuộc N. CMR : P = \(\frac{x+1}{2x+5}+\frac{x+2}{2x+4}+\frac{x+3}{2x+3}\)\(\ge\)\(\frac{3}{2}\)
2.\(P=\frac{x+1}{2x+5}+\frac{x+2}{2x+4}+\frac{x+3}{2x+3}\)
\(=\frac{x+1}{2x+5}+1+\frac{x+2}{2x+4}+1+\frac{x+3}{2x+3}+1-3\)
\(=\frac{3x+6}{2x+5}+\frac{3x+6}{2x+4}+\frac{3x+6}{2x+3}-3\)
\(=\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\)
Áp dụng BĐT Cô-si ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân vế với vế của 3 BĐT trên ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(1\right)\)
Áp dụng BĐT \(\left(1\right)\)ta được:
\(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\ge\frac{9}{6x+12}\)
\(\Leftrightarrow\left(3x+6\right)\left(\frac{1}{2x+5}+\frac{1}{2x+4}+\frac{1}{2x+3}\right)-3\ge3\left(x+2\right).\frac{9}{6\left(x+2\right)}-3\)
\(\Leftrightarrow P\ge\frac{3}{2}\left(đpcm\right)\)
1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)
2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)
3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)
4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)
7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên
8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)
a) Tìm số nguyên \(n\)để \(A\)là phân số
b) Tìm số nguyên \(n\)để \(A\)là số nguyên
9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên
10. Tìm tập hợp các số nguyên \(a\)là bội của 3:
\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)
Bài 1 : Tìm n € N* sao cho n^2 +15 là số chính phương
Bài 2 : Tìm x,y € N sao cho
a) 1 + x + y = xy b) x^2 + y + 1 = xy
Bài 3 : a) Tìm P là số nguyên tố sao cho P^2 + 2 là số nguyên tố
b) Cho x,y € N sao cho :
x + 1 và y + 2003 chia hết 6
CMR : 4x + xy chia hết 6
Bài 1:
\(^{n^2+15}\)là số chính phương nên đặt \(n^2+15=a^2\left(a\in N\right)\)
\(\Rightarrow n^2-a^2=-15\Rightarrow n^2-an+an-a^2=-15\Rightarrow\left(n^2-an\right)+\left(an-a^2\right)=-15\)
\(\Rightarrow n\left(n-a\right)+a\left(n-a\right)=-15\Rightarrow\left(n+a\right)\left(n-a\right)=-15\)
Vì \(a,n\in N\Rightarrow n-a\le n+a\)
Xét các trường hợp, bài toán đưa về dạng tổng-hiệu:
TH1:\(\hept{\begin{cases}n-a=-1\\n+a=15\end{cases}\Rightarrow\left(n,a\right)=\left(8,7\right)}\Rightarrow n=8\)
TH2:\(\hept{\begin{cases}n-a=-3\\n+a=5\end{cases}\Rightarrow n=1}\)
TH3:\(\hept{\begin{cases}n-a=-5\\n+a=3\end{cases}\Rightarrow n=-1\notin N\Rightarrow}\)loại
TH4\(\hept{\begin{cases}n-a=-15\\n+a=1\end{cases}\Rightarrow n=-7\notin N\Rightarrow}\)loại
2 bài còn lại dễ ,bạn tự làm nhé
Làm đầy đủ minhg k cho , và đang rất cần gấp
1) Tìm \(n\in N\) để \(n^2+n+6\) là số chính phương
2) Tìm x,y,z biết :
a) \(\left|x\right|+\left|-x\right|=3-x\)
b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
c) 2x = 3y ; 5x = 7z và \(3x-7y+5z=30\)
giúp e vs các a cj soyeon_Tiểubàng giải
Phương An
Hoàng Lê Bảo Ngọc
Silver bullet
Nguyễn Huy Tú
Nguyễn Như Nam
Hoàng Tuấn Đăng
Nguyễn Trần Thành Đạt
Nguyễn Huy Thắng
Võ Đông Anh Tuấn
Bài 1 : Cho a, b \(\in\)N*. Chứng tỏ rằng:
a, \(\frac{a}{b}+\frac{b}{a}\ge2\);
b, \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\).
Bài 2 : Kí hiệu [x, y] là BCNN(x, y).
Cho a, b, c là ba số nguyên tố khác nhau đôi một.
Chứng minh rằng : \(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\frac{1}{3}\).
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1
a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*
=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
b) tương tự ta có \(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)
\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
bài 2 chịu
Bài 2:
=> \(\frac{1}{\left[a.b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Do a,b,c là các số nguyên tố khác nhau
=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)
=> đpcm
1)tìm x;y;z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)Hỏi x=...;y=....;z=.....
2)cho a,b,c là các số khác 0 thỏa mãn b2 =ac
Khi đó ta được \(\frac{a}{c}=\left(\frac{a+2014b}{b+2014c}\right)^n\)Vậy n=?
cho x,y,z là các số thực thỏa mãn x+y+z =1 .Tìm GTNN của biểu thức
P= \(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
*số thực dương
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x+y+z}=\frac{\frac{49}{16}}{1}=\frac{49}{16}\)
Đẳng thức xảy ra <=> \(\frac{\frac{1}{4}}{x}=\frac{\frac{1}{2}}{y}=\frac{1}{z}=\frac{\frac{1}{4}+\frac{1}{2}+1}{x+y+z}=\frac{\frac{7}{4}}{1}=\frac{7}{4}\Rightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Vậy ...