(15xy^2 + 17x^2y^3 -18x^2y^2) : 6xy^2 giúp với cần gấp lắm
Tính:
\(\left(4x^2+x^2y-5y^3\right)-\left(\frac{5}{3}x^3-6xy^2-x^2y\right)+\left(\frac{x}{3}^3+10y^3\right)+\left(6y^3-15xy^2-4x^2y-10x^3\right)\)
Cho đa thức
\(A=\left(4x^2+x^2y-5y^3\right)+5.\left(\frac{5}{3}x^5-6xy^2-x^2y\right)+3y.\left(\frac{x^2}{3}+10y^2\right)+\left(6y^3-15xy^2-4x^2y-10x^3\right)\)
a) rút gọn biểu thứcA
Cho đa thức
\(A=\left(4x^2+x^2y-5y^3\right)+5.\left(\frac{5}{3}x^5-6xy^2-x^2y\right)+3y.\left(\frac{x^2}{3}+10y^2\right)+\left(6y^3-15xy^2-4x^2y-10x^3\right)\)
a) rút gọn biểu thứcA
a,6x^2(3x^2-4x+5)
b,(x-2y) (3xy+6y^2+x)
c, (18x^4y^3-24x^3y^4+12x^3y^3):(-6x^2y^3)
gấp gấp giúp em vs
Tìm đa thức M
\(a\))\(M+\left(5x^2-2xy\right)=8x^2-7xy-5y^2\)
b)\(\left(15xy-3x^2y+1\right)-M=2x^2y-15xy+x-2\)
GIÚP MÌNH VỚI MỌI NGƯỜI ƠI MÌNH TICK CHO Ạ MÌNH ĐANG GẤP
Bạn viết đề cẩn thận bằng công thức toán thì sẽ tăng khả năng nhận được sự giúp đỡ hơn. Viết như thế này nhìn rối mắt cực.
Cho đa thức
\(A=\left(4x^2+x^2y-5y^3\right)+5.\left(\frac{5}{3}x^5-6xy^2-x^2y\right)+3y.\left(\frac{x^2}{3}+10y^2\right)+\left(6y^3-15xy^2-4x^2y-10x^3\right)\)
a) rú gọn biểu thứcA
b) Tính giá trị biểu thức tại \(x=-\frac{1}{2};y=-\frac{1}{3}\)
c)Tìm đa thức D sao cho A+D=\(-2x^3+6y^3-3x^2y\)
Giúp mik với
a, Tính x^20 - 19x^19 + 18x^18 - 17x^17 + 16x^16 - 15x^15 với x= 19
b, tính: x^4 + y^4 - 2x^2y^2 biết x^2 + y^2 = 1
Thực hiện phép chia:
a. (-2x^5+3x^2-4x^3):2x^2
b .(x^3-2x^2y+3xy^2):(-1/2x)
c. (3x^2y^2+6x^2y^3-12xy^2):3xy
d. (4x^3-3x^2y+5xy^2):0,5x
e. (18x^3y^5-9x^2y^2+6xy^2):3xy^2
f. (x^4+2x^2y^2+y^4):(x^2+y^2)
sau bạn đăng tách ra cho mn cùng giúp nhé
a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)
b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)
c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)
d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)
e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)
f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)