Tìm chữ số tận cùng của:
A=\(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)
Tìm chữ số tận cùng của:A=19^5^1^8^9^0+2^9^1^9^6^9
\(19^{5^{1^{8^{9^0}}}}=19^5;2^{9^{1^{9^{6^9}}}}=2^9\)
195=194.19=...1.19=...9
29=24.24.2=16.16.2=...2
=>195+29 có tận cùng là 1
vậy chữ số tận cùng của \(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)là 1
^Tìm chữ số tận cùng của 19^5^1^8^9^0+2^1^9^6^9
Tìm chữ số tận cùng của
19^5^1^8^9^0+2^9^1^9^6^9
Tìm chữ số tận cùng của ; A = 195^1^8^9^0 + 29^1^9^6^9
ta có \(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=2476611\)
Tìm chữ số tận cùng:
\(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)
<=> \(A=19^{5^1}+2^{9^1}\)
<=>\(A=19^5+2^9\)
Ta thấy: 19 ≡ 9(mod 10)
<=>19 ≡ -1(mod 10)
<=>195 ≡ (-1)5(mod 10)
<=>195 ≡ -1(mod 10)
Lại có: 29=512 ≡ 2(mod 10)
<=>29 ≡ 2(mod 10)
=>195+29 ≡ -1+2(mod 10)
<=>A≡1(mod 10)
Vậy chữ số tận cùng của A là 1
Tìm chữ số tận cùng của :
\(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)
Các bạn giúp mK nhé . Thanks
Ta có: \(5\equiv1\left(mod4\right)\)
\(\Rightarrow5^{1^{8...}}\equiv1\left(mod4\right)\)
=> 51...có dạng 4k+1
=> 195...có dạng 194k+1=194k.19=...1.19 tận cùng 9
29...có dạng 24k+1=24k.2=...6.2 tận cùng 2
Do đó A tận cùng 1
B1: Tìm chữ số tận cùng của A = \(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)
B2: cho x - y = 3. Tìm giá trị nhỏ nhất của biểu thức B = | x - 6 | + | y + 1 |
Đây là dạng toán nâng cao chuyên đề chữ số tận cúng của lũy thừa. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em làm dạng này như sau:
\(A=19^{5^{1^{8^{9^0}}}}\) + \(2^{9^{1^{9^{6^9}}}}\)
+ Ta có: 5 \(\equiv\) 1 (mod 2) ⇒ \(5^{1^{8^{9^0}}}\) \(\equiv\) \(1^{1^{8^{9^0}}}\) (mod 2)
⇒ \(5^{1^{8^{9^0}}}\) \(\equiv\) 1 (mod2)
Vậy đặt \(5^{1^{8^{9^0}}}\) = 2k + 1 khi đó
\(19^{5^{1^{8^{9^0}}}}\) = \(19^{2k+1}\) = (192)k.19 = (\(\overline{..1}\))k.19 = \(\overline{..1}^{ }.19\)= \(\overline{..9}\) (1)
+ Mặt khác: 9 \(\equiv\) 1 (mod 4) ⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) \(^{1^{1^{9^{6^9}}}}\) (mod 4)
⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) 1 (mod 4)
Vậy đặt \(^{9^{1^{9^{6^9}}}}\) = 4k + 1 khi đó
\(2^{9^{1^{9^{6^9}}}}\) = 24k+1 = (24)k.2 = (\(\overline{..6}\))k.2 = \(\overline{..6}\).2 = \(\overline{..2}\) (2)
Kết hợp (1) và (2) ta có:
A = \(\overline{..9}\) + \(\overline{..2}\) = \(\overline{..1}\)
Tìm chữ số tận cùng của tổng sau
\(A=22^{4^{1^{8^{7^{0^{1^{9^{8^0}}}}}}}}+19^{5^{1^{8^{9^{0^{1^{9^{8^0}}}}}}}}\)
Mũ trên cùng của cả 2 đều là 0 nha
B1: Tìm chữ số tận cùng của A = \(19^{5^{1^{8^{9^0}}}}\)+ \(2^{9^{1^{9^{6^9}}}}\)
B2: cho x - y = 3. Tìm giá trị nhỏ nhất của biểu thức B = | x - 6 | + | y + 1 |
x-y = 3 =>x=3+y
=>\(B=\left|3+y-6\right|+\left|y+1\right|=\left|y-3\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
Áp dụng BĐT chứa dấu giá trị tuyệt đối:
\(B=\left|3-y\right|+\left|y+1\right|\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra khi: \(\left(3-y\right)\left(y+1\right)\ge0\)
=>3-y\(\ge\)0 và y+1\(\ge\)0 hoặc 3-y\(\le\)0 và y+1\(\le\)0
=>\(-1\le y\le3\)
Vậy GTNN của B là 4 tại \(-1\le y\le3\) và x-y=3
B1: \(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=\overline{....9}+512=\overline{....1}\)
Vậy chữ số tận cùng của A là 1