Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Mai Trang
Xem chi tiết
phung viet hoang
12 tháng 3 2015 lúc 16:59

nguyên lý ngăn kéo Diritchlet có nội dung là nếu như một số lượng n vật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 2 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Quách Phương Duy
12 tháng 3 2015 lúc 20:08

nguyên lý Direchlet được phát biểu như sau: nếu nhốt 7 con thỏ vào trong 3 cái lồng thì ít nhất có một cái lồng chứa 3 con thỏ .

Đặng Thị Phương Thảo
14 tháng 3 2015 lúc 8:38

nguyên lý ngăn kéo Diritchlet có nội dung là nếu như một số lượng n vật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 2 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Hoa Tulip
Xem chi tiết
Trang Sún
25 tháng 5 2015 lúc 11:52

Trong toán học, nguyên lý chuồng bồ câunguyên lý hộp hay nguyên lý ngăn kéo Diritchlet có nội dung là nếu như một số lượng n vật thể được đặt vào mchuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 3 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi "nguyên lý ngăn kéo" (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là "nguyên lý ngăn kéo Dirichlet" hay đôi khi gọi gọn là "nguyên lý Dirichlet" (tên gọi gọm này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên "ngăn kéo" chứ không phải "chuồng bồ câu".

nguyen truong giang
25 tháng 5 2015 lúc 11:40

o trong sgk co day sao ban ko xem vay ?

Đào Ngọc Lan
Xem chi tiết
Nguyễn Triệu Yến Nhi
24 tháng 3 2015 lúc 17:39

Trong toán học, nguyên lý chuồng bồ câunguyên lý hộp hay nguyên lý ngăn kéo Diritchlet có nội dung là nếu như một số lượng nvật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 2 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi "nguyên lý ngăn kéo" (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là "nguyên lý ngăn kéo Dirichlet" hay đôi khi gọi gọn là "nguyên lý Dirichlet" (tên gọi gọm này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên "ngăn kéo" chứ không phải "chuồng bồ câu".

Nguyên lý ngăn kéo Dirichlet dược ứng dụng trực tiếp nhất cho các tập hợp hữu hạn (hộp, ngăn kéo, chuồng bồ câu), nhưng nó cũng có thể được áp dụng đối với các tập hợp vô hạn không thể được đặt vào song ánh. Cụ thể trong trường hợp này nguyên lý ngăn kéo có nội dung là: "không tồn tại một đơn ánh trên những tập hợp hữu hạn mà codomain của nó nhỏ hơn tập xác định của nó". Một số định lý của toán học như bổ đề Siegel được xây dựng trên nguyên lý này.

Nếu m con chim bồ câu được đặt vào n chuồng chim bồ câu và m > n, thì (ít nhất) một chuồng chim bồ câu sẽ bao hàm ít nhất \lfloor m/n \rfloor vật thể nếu m là bội của n, và ít nhất \lfloor m/n \rfloor + 1 vật thể nếu m không phải là bội của n.

[2]

Mở rộng hơn nữa, ta có thể viết nguyên lý ngăn kéo Dirichlet như sau:

Nếu m vật thể được đặt vào n hộp chứa, thì ít nhất một hộp chứa sẽ mang không dưới \lceil m/n \rceil vật thể và ít nhất một hộp chứa sẽ mang không quá \lfloor m/n \rfloor vật thể.
Sonoda Umi
24 tháng 3 2015 lúc 17:40

Trong toán học, nguyên lý chuồng bồ câu, nguyên lý hộp hay nguyên lý ngăn kéo Diritchlet có nội dung là nếu như một số lượng nvật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 2 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi "nguyên lý ngăn kéo" (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là "nguyên lý ngăn kéo Dirichlet" hay đôi khi gọi gọn là "nguyên lý Dirichlet" (tên gọi gọm này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên "ngăn kéo" chứ không phải "chuồng bồ câu".

Nguyên lý ngăn kéo Dirichlet dược ứng dụng trực tiếp nhất cho các tập hợp hữu hạn (hộp, ngăn kéo, chuồng bồ câu), nhưng nó cũng có thể được áp dụng đối với các tập hợp vô hạn không thể được đặt vào song ánh. Cụ thể trong trường hợp này nguyên lý ngăn kéo có nội dung là: "không tồn tại một đơn ánh trên những tập hợp hữu hạn mà codomain của nó nhỏ hơn tập xác định của nó". Một số định lý của toán học như bổ đề Siegel được xây dựng trên nguyên lý này.

Nếu m con chim bồ câu được đặt vào n chuồng chim bồ câu và m > n, thì (ít nhất) một chuồng chim bồ câu sẽ bao hàm ít nhất \lfloor m/n \rfloor vật thể nếu m là bội của n, và ít nhất \lfloor m/n \rfloor + 1 vật thể nếu m không phải là bội của n.    ”
—[2]
Mở rộng hơn nữa, ta có thể viết nguyên lý ngăn kéo Dirichlet như sau:

“    Nếu m vật thể được đặt vào n hộp chứa, thì ít nhất một hộp chứa sẽ mang không dưới \lceil m/n \rceil vật thể và ít nhất một hộp chứa sẽ mang không quá \lfloor m/n \rfloor vật thể.
oi dai wa

winx
Xem chi tiết
Cute phômaique
4 tháng 5 2015 lúc 20:19

vậy là bạn trả lời...rất chính xác                

Hoàng Quốc Huy
10 tháng 1 2016 lúc 10:58

Là nguyên lý Direchlet thôi!

Phùng Thế Hoàng
1 tháng 2 2016 lúc 21:27

Rất đơn giản :

ví dụ : có 3 con thỏ mà chỉ có 2 cái lồng,vậy sẽ có ít nhất 1 lồng chứa 2 thỏ

Tổng quát : n thỏ > m lồng vậy ít nhất 1 lồng chứa 2 con thỏ

Nguyễn Hương Thảo
Xem chi tiết
Nguyễn Ngọc Khánh Huyền
6 tháng 12 2021 lúc 15:16

Geography

Nguyễn Hương Thảo
6 tháng 12 2021 lúc 15:17

Thanks 

Tanjiro Diệt Quỷ 2k9 (ɻɛ...
Xem chi tiết
ɣ/ղ✿ʑคภg✿♄ồ‿
8 tháng 2 2021 lúc 9:59
Nguyên nhân thất bại của An Dương Vương:

- Do chủ quan, quá tự tin vào lực lượng của mình, không đề cao tinh thần cảnh giác với kẻ thù.

- Nội bộ không đoàn kết, thống nhất cùng nhau chống giặc.

- Yêu con mù quáng, quá tin vào nỏ thần, tự mãn với chiến thắng.

Khách vãng lai đã xóa
Vũ Diệu Châu
8 tháng 2 2021 lúc 10:01

Câu này dễ

Năm 179 TCN, Triệu Đà xuống xâm chiếm Âu Lạc, An Dương Vuong bị mất hết tướng giỏi nên nước Âu Lạc rơi tay vào nhà Triệu

Khách vãng lai đã xóa
TRẦN KHÁNH CHI
8 tháng 2 2021 lúc 10:03

Trọng Thủy đã Biết mọi ngõ ngách vào thành Cổ Loa. Mị Châu cũng tiết lộ cho hắn về chiếc nỏ thần.Hẳn đánh tráo nỏ thần thật với nỏ thần giả, Nghiên cứu nỏ thần và chế tác ra nhiều vũ khí như vậy. An Dương Vương chủ quan, cứ tưởng có nỏ thần là sẽ thắng nhưng không ngờ đó là nỏ giả.Một phần cũng là do Mị Châu quá yêu và tin tưởng Trọng Thủy nên đã nói cho hắn bí mật về thảnh Cổ Loa và cách dùng nỏ thần

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết
Thư Phan
16 tháng 11 2021 lúc 9:00

Tham khảo

Sơ đồ nguyên lý điện dân dụng dùng để nghiên cứu những nguyên lý hoạt động của các thiết bị điện và mạch điện. Đây là dạng sơ đồ hiển thị ví trí lắp đặt, các lắp ráp giữa các phần tử của mạch điện.Sơ đồ lắp đặt được trình bày cụ thể vị trí chính xác từng linh kiện (bộ phận) từng mạch điện trong một thiết bị.

Songoku Super Siêu Saya
Xem chi tiết
Bảo Nguyễn Chi
19 tháng 10 2016 lúc 14:02

là toán và tán

Chi Nguyễn Bảo
19 tháng 10 2016 lúc 14:26

toán và tán

hoanghienly
19 tháng 10 2016 lúc 15:16

toan va tan

phamngyenminh
Xem chi tiết
Rồng Con Lon Ton
3 tháng 2 2016 lúc 9:44

Trong toán học, nguyên lý chuồng bồ câunguyên lý hộp hay nguyên lý ngăn kéo Dirichlet có nội dung là nếu như một số lượng n vật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể. Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 3 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác.

Bạn có thể xem thêm tại: https://vi.wikipedia.org/wiki/Nguy%C3%AAn_l%C3%BD_ng%C4%83n_k%C3%A9o_Dirichlet