Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chuột yêu Gạo
Xem chi tiết
Minh Hiếu
12 tháng 2 2022 lúc 20:10

\(a,lim\left(8n-3n^9+1\right)\)

\(=limn^9\left(\dfrac{8}{n^8}-3+\dfrac{1}{n^9}\right)\)

\(=n^9\left(0-3+0\right)=n^9.\left(-3\right)=\)-∞

 

Nguyễn Việt Lâm
12 tháng 2 2022 lúc 20:34

\(\lim\left(6n^4-n+1\right)=\lim n^4\left(6-\dfrac{1}{n^3}+\dfrac{1}{n^4}\right)=+\infty.6=+\infty\)

\(\lim\left(2-3n+7n^2\right)=\lim n^2\left(\dfrac{2}{n^2}-\dfrac{3}{n}+7\right)=+\infty.7=+\infty\)

Nguyễn Phương An
Xem chi tiết
Sói
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2020 lúc 17:16

Đáp án D sai

Hàm đa thức có giới hạn tại mọi điểm và tại tất cả các điểm thì giới hạn trái luôn bằng giới hạn phải

Khách vãng lai đã xóa
Linh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 4 2020 lúc 16:47

Do \(x< 2\) nên x chỉ tiến tới 2 từ phía trái

Do đó hàm số chỉ có giới hạn trái tại điểm x=2 (giới hạn bằng dương vô cực)

Đỗ Hạnh Quyên
Xem chi tiết
Phạm Thảo Vân
4 tháng 5 2016 lúc 21:46

Áp dụng công thức khai triển nhị thức Newton, ta có :

\(\left(1+mx\right)^n=1+C_n^1\left(mx\right)+C_n^2\left(mx\right)^2+.....C_n^n\left(mx\right)^n\)

\(\left(1+nx\right)^m=1+C_m^1\left(nx\right)+C_m^2\left(nx\right)+....+C_m^m\left(nx\right)^m\)

Mặt khác ta có : \(C_n^1\left(mx\right)=C_n^1\left(nx\right)=mnx\)

\(C_n^2\left(mx\right)^2=\frac{n\left(n-1\right)}{2}m^2x^2;C_m^2\left(nx\right)^2=\frac{m\left(m-1\right)}{2}n^2x^2;\)

Từ đó ta có :

\(L=\lim\limits_{x\rightarrow0}\frac{\left[\frac{n\left(n-1\right)}{2}m^2-\frac{m\left(m-1\right)}{2}n^2\right]x^2+\alpha_3x^3+\alpha_4x^4+....+\alpha_kx^k}{x^2}\left(2\right)\)

Từ (2) ta có : \(L=\lim\limits_{x\rightarrow0}\left[\frac{mn\left(n-m\right)}{2}+\alpha_3x+\alpha_4x^2+....+\alpha_kx^{k-2}\right]=\frac{mn\left(n-m\right)}{2}\)

Đừng gọi tôi là Jung Hae...
Xem chi tiết
Akai Haruma
12 tháng 2 2022 lúc 19:29

Lời giải:
\(\lim(-2n^3-5n+9)=\lim n^3(-2-\frac{5}{n^2}+\frac{9}{n^3})\)

Khi \(n\to +\infty\Rightarrow \lim n^3=+\infty ; \lim (-2-\frac{5}{n^2}+\frac{9}{n^3})=-2<0\) nên \(\lim (-2n^3-5n+9)=-\infty \)

b. Tương tự phần a, \(\lim (8n-3n^9+1)=-\infty \)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 2 2019 lúc 16:24

Giải bài 3 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

Chuột yêu Gạo
Xem chi tiết
Minh Hiếu
12 tháng 2 2022 lúc 20:17

\(a,lim\left(\sqrt{n^2+n+1}-n\right)\)

\(=lim\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}\)

\(=lim\dfrac{1+\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)

Nguyễn Việt Lâm
12 tháng 2 2022 lúc 20:31

\(\lim\dfrac{\sqrt[]{n^3+2n}-2n^2}{3n+1}=\lim\dfrac{\sqrt[]{n+\dfrac{2}{n}}-2n}{3+\dfrac{1}{n}}=\lim\dfrac{n\left(\sqrt[]{\dfrac{1}{n}+\dfrac{2}{n^3}}-2\right)}{3+\dfrac{1}{n}}\)

\(=\dfrac{+\infty\left(0-2\right)}{3}=-\infty\)