tim so nguyen n sao cho n-6 chia het cho n-4
tim so nguyen n sao cho n-6 chia het cho n-4
<=>(n-4)-2 chia hết n-4
=>2 chia hết n-4
=>n-4\(\in\){-1,-2,1,2}
=>n\(\in\){3,2,5,6}
Ta có:n-6 chia hết cho n-4
n-4-2 chia hết cho n-4
-2 chia hết cho n-4 vì n-4 chia hết cho n-4
->n-4 thuộc Ư(-2)
Ư(-2)={1;2;-1;-2}
n-4=1->n=5
n-4=2->n=6
n-4=-1->n=3
n-4=-2->n=2
Vậy:n thuộc {5;6;3;2}
(Nhớ tick cho mình nha)
tim so nguyen n sao cho 3n+4 chia het cho n+1
3n + 4 chia hết cho n + 1
=> 3( n + 1 ) + 1 chia hết cho n + 1
=> 1 chia hết cho n + 1
=> n + 1 thuộc Ư( 1 )
=> n + 1 thuộc { 1 ; - 1 }
=> n thuộc { 0 ; - 2 }
\(\Rightarrow3n+3+1⋮n+1\)
\(\Rightarrow3\left(n+1\right)+1⋮n+1\)
\(3\left(n+1\right)⋮n+1\)
\(\Rightarrow1⋮n+1\)
tự làm tiếp
tim so nguyen n sao cho 3n+4 chia het cho n+1
Ta có:
3n +4 = 3n +3 +1 = 3(n+1) +1
Ta thấy n+1 chia hết cho n+1 với mọi n
mà 3 là số nguyên
=> 3(n+1) chia hết cho n+1 với mọi n (1)
Để 3n+4 chia hết cho n+1 thì 3(n+1) +1 chia hết cho n+1 (2)
Từ (1) và (2 ) => 1 chia hết cho n+1
Mà n là số nguyên nên n+1 là số nguyên
=> n+1 là ước của 1
Mặt khác Ư(1) = { 1;-1}
=> n+1 =1 ; n+1 =-1
=> n=0 ; n =-2
Vậy n thuộc { 0;2}
\(\Rightarrow3n+3+1⋮n+1\)
\(\Rightarrow3\left(n+1\right)+1⋮n+1\)
\(3\left(n+1\right)⋮n+1\)
\(\Rightarrow1⋮n+1\)
tự làm tiếp
ta có\(3n+4⋮n+1\)
\(\Leftrightarrow3\left(n+1\right)+1⋮n+1\)
mà\(3\left(n+1\right)⋮n+1\)
\(\Leftrightarrow1⋮n+1\)
n+1 thuộc ước của 1
đến đây lập bảng là ra
Tim so nguyen n sao cho 3n +24 chia het cho n - 4
ta có: 3n +24 chia het cho n-4
=> 3n+24-3n+12 chia hết cho n-4
=> 36 chia hết cho n-4
=> n-4 thuộc Ư(36)={1;2;3;4;6;9;12;36} và các giá trị âm tương ứng
Mà n-4>=-4
=> n-4=-4;-3;-2;-1;1;2;3;4;6;9;12;36
=> n=0;1;2;3;5;6;7;8;10;13;16;40
Ta có: 3n+24 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
nên 36 chia hết cho n-4
=>n-4 E Ư(36)={1;2;3;4;6;9;12;18;36;-1;-2;-3;-4;-6;-9;-12;-18;-36}
=> n E {5;6;7;8;10;13;16;22;40;3;2;1;0;-2;-5;-8;-14;-32}
3n+24/n-4 = 3(n+8)/n-4
3n+24 chia hết cho n-4 => n+8 chia hết cho n-4
n+8/n-4 = n-4+12/n-4= 1=12/n-4
12 chia hết cho n-4 => n-4 thuộc Ư(12)
thế vào rồi tìm nka nhớ n khác 4
tim so nguyen n sao cho (n-6)chia het (n-1)
\(n-6⋮n-1\)
\(\Rightarrow\left(n-1\right)-5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)
Vậy........................
tim tat ca cac so nguyen n sao cho n^2+4 chia het n+2
Ta có : n2 + 4 ⋮ n + 2
<=> n2 - 4 + 8 ⋮ n + 2
<=> n2 - 22 + 8 ⋮ n + 2
<=> (n - 2)(n + 2) + 8 ⋮ n + 2
=> 8 ⋮ n + 2 Hay n + 2 ∈ Ư(8) = { ± 1; ± 2; ± 4; ± 8 }
=> n + 2 = { ± 1; ± 2; ± 4; ± 8 }
=> n = { - 10; - 6; - 4; - 3; - 1; 0; 2; 6 }
tim so nguyen n sao cho n^2 chia het cho n+1
Tim so nguyen n sao cho n+5 chia het cho n-2
<=>(n-2)+7 chia hết n+5
=>7 chia hết n+5
=>n+5\(\in\){1,-1,7,-7}
=>n\(\in\){-4,-6,2,-12}
Để n+5 chia hết n-2
=> n-2+7 CHIA HẾT n+2
=> 7 chia hết n+2
=> n+2 \(\in\) Ư(7)
=> Ư(7)={-1;1;-7;7}
Ta có:
n+5 chia het cho n-2
suy ra n-2+7 chia het cho n-2
Vi n-2 chia het cho n-2 suy ra 7 chia het cho n-2
Do n thuoc Z nen n-2 thuoc Z
suy ra n-2 thoc{1;-1;7;-7}
n thuoc {3;1;9;-5}
Vay ...
tim so nguyen n sao cho n+2 chia het cho n-3
Ta có n+2=n-3+5
Để n+2 chia hết cho n-3 thì n-3+5 chia hết cho n-3
Vì n nguyên => n-3 nguyên
=> n-3 thuộc Ư(5)={-5;-1;1;5}
Ta có bảng
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
=> 5 chia hết cho n-3
=> n-3 thuộc u của 5
tự làm ra nha