tìm các số nguyên dương a để giá trị biểu thức : căn (199-a^2+2a) +2 là số chính phương
Tìm các số nguyên dương n sao cho biểu thức A= 1! + 2! + 3! + ... + n! có giá trị là một số chính phương.
https://h7.net/hoi-dap/toan-6/tim-n-biet-1-2-3-n-la-so-chinh-phuong-faq291864.html
bạn tham khảo
B1)Cho biểu thức A= a mũ 3 + 2a mũ 2 -1/a mũ 3 +2a mũ 2 + 2a + 1
a,Rút gọn biểu thức
b,Chứng mik rằng nếu số a là số nguyên thì giá trị biểu thức tìm được của câu a,là một phân số tối giản.
B2)
a.Tìm n để n mũ 2 +2006 là 1 số chính phương
b.Cho n là số nguyên tố lớn hơn 3.Hỏi n mũ 2 +2006 là số nguyên tố hay hợp số
GIÚP MIK ĐI NHA,MAI NỘP BÀI RỒI.T_T
Tìm các số tự nhiên k để cho số 2k + 24 + 27 là một số chính phương
Tìm các số nguyên x sao cho A = x(x-1)(x-7)(x-8) là một số chính phương
Cho A = p4 trong đó p là một số nguyên tố
a. Số A có những ước dương nào ?
b. Tìm các giá trị của p để tổng các ước dương của A là một số chính phương
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
giúp mk câu ni vs::cho các số dương a,b,c thõa mãn ab+bc+ac=1. Tìm giá trị lớn nhất của biểu thức P= 2a/căn(1+a^2) +b/căn(1+b^2)+c/căn(1+c^2)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)
\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)
\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có :
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b +c\right)}}\)
\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)
\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)
P/s : Mình tự nghĩ chứ không phải mình copy đâu
Tìm các số nguyên tố x sao cho giá trị của biểu thức A là số chính
phương : A = x 2 - 6x + 6 .
tìm x để A nhận các giá trị là số nguyên dương A=(7 căn x -2)/(2 căn x +1)
tìm số nguyên dương n để các biểu thức sau là số chính phương n^2-n+2
Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)
=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7
Đến đây liệt kê ước của - 7 rồi xét các TH !!!
Tìm các số nguyên tố x sao cho giá trị của biểu thức A là số chính
phương : A = x2 - 6x + 6 .