Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trang Quyên
Xem chi tiết
Nguyễn Duy Minh
24 tháng 11 2017 lúc 9:59

Câu 1: I là giao điểm của 3 đường trung trực nên nó cách đều 3 đỉnh của tam giác đó.

Đáp án: B)

Câu 2: Đáp án: C) 1270 

Câu 3:  \(AG=\frac{2}{3}AM=\frac{2}{3}.12=8\left(cm\right)\)

 Đáp án: A)

Đỗ Đức Duy
Xem chi tiết
Trần Đức Huy
9 tháng 2 2022 lúc 18:11

Xét tam giác ABC cân tại A có:

   G là trọng tâm

=> G là giao của 3 đường trung tuyến

=>AG là đường trung tuyến

Mà tam giác ABC cân tại A

=>AG cũng là đường trung trực

Mà AI là đường trung trực(do I cách đều 3 điểm)

=>AG trùng AI(Tiên đề Ơ clit)

=>A,G,I thẳng hàng

Lựu Ngô
9 tháng 2 2022 lúc 18:09

- Gọi M, N là trung điểm CA và BA.

ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.

⇒ BM = CN ( chứng minh ở bài 26)

Mà Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (Tính chất trọng tâm của tam giác)

⇒ GB = GC

- ΔAGB và ΔAGC có

AG chung

 

AB = AC (do ΔABC cân tại A)

GB = GC (chứng minh trên)

⇒ ΔAGB = ΔAGC (c.c.c)

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Theo đề bài I cách đều ba cạnh của tam giác

Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác

⇒ I thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vì G, I cùng thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 nên A, G, I thẳng hàng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2017 lúc 14:44

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Gọi M, N là trung điểm CA và BA.

ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.

⇒ BM = CN ( chứng minh ở bài 26)

Mà Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (Tính chất trọng tâm của tam giác)

⇒ GB = GC

- ΔAGB và ΔAGC có

AG chung

AB = AC (do ΔABC cân tại A)

GB = GC (chứng minh trên)

⇒ ΔAGB = ΔAGC (c.c.c)

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Theo đề bài I cách đều ba cạnh của tam giác

Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác

⇒ I thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vì G, I cùng thuộc tia phân giác của Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 nên A, G, I thẳng hàng

ai bit
Xem chi tiết
DIỄM LỢI
Xem chi tiết
Huyền Trân
Xem chi tiết
Kudo Shinichi
19 tháng 9 2019 lúc 20:44

A B C I G N M

Gọi giao điểm của BG với AC là M ;

CG với AB là N

Vì G là trọng tâm của  \(\Delta ABC\)

nên BM, CN, là trung tuyến

Mặt khác \(\Delta ABC\)  cân tại A

Nên BM = CN 

Ta có : \(GB=\frac{1}{2}BM;GC=\frac{2}{3}CN\)  (t/c trọng tâm của tam giác)

Mà  BM = CN nên GB = GC

Do đó : \(\Delta AGB=\Delta AGC\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAG}=\widehat{CAG}\Rightarrow G\) thuộc phân giác của \(\widehat{BAC}\)

Mà \(\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\Rightarrow I\) thuộc phân giác của  \(\widehat{BAC}\)

Vì G, I cùng thuộc phân giác của  \(\widehat{BAC}\) nên A, G, I  thẳng hàng

Chúc bạn học tốt !!!

Online Math ( Admin@gmai...
Xem chi tiết
Kiệt Nguyễn
17 tháng 2 2019 lúc 11:58

                             Giải

Giải bài 40 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7

- Gọi M, N là trung điểm CA và BA.

ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.

⇒ BM = CN ( chứng minh ở bài 26)

Mà \(GB=\frac{2}{3}BM;GC=\frac{2}{3}CN\)(Tính chất trọng tâm của tam giác)

⇒ GB = GC

- ΔAGB và ΔAGC có

AG chung

AB = AC (do ΔABC cân tại A)

GB = GC (chứng minh trên)

⇒ ΔAGB = ΔAGC (c.c.c)

\(\Rightarrow\widehat{BAG}=\widehat{CAG}\)( hai góc tương ứng )

\(\Rightarrow\)G là trọng tâm của \(\widehat{BAC}\)

- Theo đề bài I cách đều ba cạnh của tam giác

Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác

⇒ I thuộc tia phân giác của \(\widehat{BAC}\)

Vì G, I cùng thuộc tia phân giác của  \(\widehat{BAC}\)nên A, G, I thẳng hàng

Duy trần
Xem chi tiết
Võ Trang Nhung
10 tháng 4 2016 lúc 13:05

Gọi giao điểm của BG với AC là M;

CG với AB là N

Vì G là trọng tâm của ∆ ABC

nên BM, CN, là trung tuyến

Mặt khác ∆ABC cân tại A

Nên BM = CN 

Ta có GB = BM; GC = CN (t/c trọng tâm của tam giác)

Mà BM = CN nên GB = GC

Do đó: ∆AGB = ∆AGC (c.c.c)

=>   => G thuộc phân giác của 

Mà ∆ABI = ∆ACI (c.c.c)

=>  => I thuộc phân giác của 

Vì G, I cùng thuộc phân giác của  nên A, G, I  thẳng hàng



 

Vũ Quỳnh Hương
2 tháng 4 2018 lúc 21:48

Vì G là trọng tâm của tam giác ABC trên D thuộc đường trung tuyến AM (1)

Vì I là giao điểm các phân giác của tam giác ABC nên AI là tia phân giác của góc A mà trong tam giác cân phân giác của góc ở đỉnh của tam giác cũng là trung tuyến do đó I thuộc trực tuyến AM(2)

Từ (1) và (2 )suy ra 3 điểm A,I,G thẳng hàng

Nguyễn Mạnh Dũng
17 tháng 4 2020 lúc 20:52

G I C B A

G là trọng tâm của ΔABCΔABC nên G thuộc đường trung tuyến AM (1)

Trong tam giác cân, đường trung phân giác của góc ở đỉnh đồng thời là đường trung tuyến nên I cũng thuộc đường trung tuyến AM. (2)

Từ (1) và (2) suy ra A, G, I thẳng hàng.

Khách vãng lai đã xóa
FC Đông Nhi
Xem chi tiết