Những câu hỏi liên quan
GoKu Đại Chiến Super Man
Xem chi tiết
Ngô Thị Hồng Ánh
4 tháng 1 2016 lúc 21:13

18 nha

TICK ĐI LÀM ƠN

Bình luận (0)
GoKu Đại Chiến Super Man
Xem chi tiết
Trương Tuấn Kiệt
8 tháng 1 2016 lúc 17:37

Vì n có 2 cguwx số. Theo bài ra: 10 <hoặc bằng n < hoặc bằng 99

=> 11 < hoặc bằng n + 1 < 991 và 21< hoặc bằng 2n + 1< hoặc bằng 199

n + 1 là số chính phương lẻ => n + 1 \(\in\) { 25;36;49;81;121;169;225...}

=> n \(\in\) {24;35;48;80} (1)

2n + 1 là số chính phương lẻ => 2n + 1 \(\in\) { 25;36;49;81;121;169;225...}

=> n \(\in\) {12;24;40;60;84} (2)

Từ (1) và (2) => n= 24

Vậy n = 24 thì n + 1 và 2n + 1 là số chính phương

Bình luận (0)
Miyano Rikka
Xem chi tiết
Thanh Hiền
9 tháng 12 2015 lúc 11:15

Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
⟹3n⋮8
n⋮8(1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n⋮5(2)
Từ (1) và (2)⟹n⋮40
Vậy n=40k thì ... Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
⟹3n⋮8
n⋮8(1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n⋮5(2)
Từ (1) và (2)⟹n⋮40
Vậy n=40k 

Bình luận (0)
Di Yumi
9 tháng 12 2015 lúc 11:15

n = 40

lời giải bn tham khảo câu hỏi tương tự nhé

Bình luận (0)
Tạ Đức Hoàng Anh
8 tháng 1 2021 lúc 14:18

Vì \(n\)là số tự nhiên có 2 chữ số

\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)

Vì \(2n+1\)là số chính phương lẻ

\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)

\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)

Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:

+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)

+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)

+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)

+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)

+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)

Vậy \(n=40\)

Chúc bn hok tốt ^_^

Bình luận (0)
 Khách vãng lai đã xóa
dream XD
Xem chi tiết
Trần Minh Hoàng
13 tháng 3 2021 lúc 22:28

Do 2n + 1 là số chính phương lẻ nên 2n + 1 chia cho 4 dư 1. Suy ra n chẵn.

Do đó 3n + 1 là số chính phương lẻ. Suy ra 3n + 1 chia cho 8 dư 1 nên n chia hết cho 8.

Ta có số chính phương khi chia cho 5 dư 0; 1 hoặc 4.

Do đó \(2n+1;3n+1\equiv0;1;4\left(mod5\right)\).

Mặt khác \(2n+1+3n+1=5n+2\equiv2\left(mod5\right)\).

Do đó ta phải có \(2n+1;3n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\).

Từ đó n chia hết cho 40.

Với n = 40 ta thấy thỏa mãn

Với n = 80 ta tháy không thỏa mãn.

Vậy n = 40.

Bình luận (0)
nguyen lan anh
Xem chi tiết
Tạ Đức Hoàng Anh
8 tháng 1 2021 lúc 14:18

Vì \(n\)là số tự nhiên có 2 chữ số

\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)

Vì \(2n+1\)là số chính phương lẻ

\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)

\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)

Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:

+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)

+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)

+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)

+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)

+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)

Vậy \(n=40\)

Chúc bn hok tốt ^_^

Bình luận (0)
 Khách vãng lai đã xóa
Thái Thị Trà My
Xem chi tiết
Thành Lê Xuân
Xem chi tiết
Thanh Ngô Thi
Xem chi tiết
Phạm Tuấn Kiệt
11 tháng 12 2015 lúc 11:22

1, S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c) 
Vì 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương

2,Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199. Tìm số chính phương lẻ trong khoảng trên 
ta được 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84. 
Số 3n+1 bằng 37; 73; 121; 181; 253.Chỉ có 121 là số chính phương. 
Vậy n = 40 

Bình luận (0)
Thanh Hiền
11 tháng 12 2015 lúc 11:18

1) S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c) 
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương

2)   Xin lỗi mình chỉ biết làm câu 1 thôi

 

Bình luận (0)
ak123
Xem chi tiết