Chứng minh bằng quy nạp :
4n + 15n - 1 chia hết cho 9 ( n\(\in\) N* )
Chứng minh rằng với n ∈ N * : 4 n + 15 n – 1 chia hết cho 9
4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
4^n +15n-1 chia hết cho 9 ( Ai biết làm bài này bằng phương phap quy nạp k ??????)
phương pháp quy nạp toán học
4^n +15n-1 (1)
với n =0 thì 40+15.0−1=0 chia hết 9
tương tự ta đc n=1 => (1)= 18 chia hết 9
............
giả sử (1) đúng với n =k
hay 4k+15k−1 chia hết 9
--- CM bài toán cũng đúng với n=k+1
xét 4k+1+15(k+1)−1
=4.4k+4.15k−4−3.15k+18
=4(4k+15k−1)−9(5k+2)
do 4k+15k−1 chia hết 9 và 9(5k+2) chia hết cho 9
=> 4(4k+15k−1)−9(5k+2) chia hết 9
=> cm đc với n=k+1
vậy (1) đúng với mọi số tự nhiên n.
phương pháp quy nạp toán học
4^n +15n-1 (1)
với n =0 thì 40+15.0−1=0 chia hết 9
tương tự ta đc n=1 => (1)= 18 chia hết 9
............
giả sử (1) đúng với n =k
hay 4k+15k−1 chia hết 9
--- CM bài toán cũng đúng với n=k+1
xét 4k+1+15(k+1)−1
=4.4k+4.15k−4−3.15k+18
=4(4k+15k−1)−9(5k+2)
do 4k+15k−1 chia hết 9 và 9(5k+2) chia hết cho 9
=> 4(4k+15k−1)−9(5k+2) chia hết 9
=> cm đc với n=k+1
vậy (1) đúng với mọi số tự nhiên n.
phương pháp quy nạp toán học
4^n +15n-1 (1)
với n =0 thì 40+15.0−1=0 chia hết 9
tương tự ta đc n=1 => (1)= 18 chia hết 9
............
giả sử (1) đúng với n =k
hay 4k+15k−1 chia hết 9
--- CM bài toán cũng đúng với n=k+1
xét 4k+1+15(k+1)−1
=4.4k+4.15k−4−3.15k+18
=4(4k+15k−1)−9(5k+2)
do 4k+15k−1 chia hết 9 và 9(5k+2) chia hết cho 9
=> 4(4k+15k−1)−9(5k+2) chia hết 9
=> cm đc với n=k+1
vậy (1) đúng với mọi số tự nhiên n.
chứng minh:4n 15n-10 chia hết cho 9 với n thuộc N
Chứng minh bằng quy nạp :
n(n+1) chia hết cho 2 ( n\(\in\) N )
vì néu n lẻ thì n+1 chẵn mà lẻ nhân chẵn bằng chẵn chia hết cho 2 mà nếu n chẵn thì n+1 lẻ mà chẵn nhân lẻ bằng lẻ nên n(n+1) chia hết cho 2
ĐÂY KHÔNG PHẢI TOÁN LỚP 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!....
n(n+1) xét x thuộc N => x là số chẵn hoặc số lẻ
nếu n là số chẵn thì n+1 là số lẻ chẳn nhân lẻ chia hết cho 2
nếu n là số lẻ thì n+1 là số chẵn mà lẻ nhân chẵn = chẵn chia hết cho 2
chứng minh chia hết bằng phương pháp quy nạp 10n -4n+3n chia hết cho 9
Với \(n=1\Rightarrow10-4+3=9⋮9\) (đúng)
Giả sử đúng với \(n=k\) hay \(10^k-4^k+3k⋮9\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:
\(10^{k+1}-4^{k+1}+3\left(k+1\right)⋮9\)
Thật vậy:
\(10^{k+1}-4^{k+1}+3\left(k+1\right)=10.10^k-4.4^k+3k+3\)
\(=\left(10^k-4^k+3k\right)+9.10^k-3.\left(4^k-1\right)\)
Do \(4\equiv1\left(mod3\right)\Rightarrow4^k-1⋮3\Rightarrow3\left(4^k-1\right)⋮9\)
\(\Rightarrow\left(10^k-4^k+3k\right)+9.10^k-3\left(4^k-1\right)⋮9\) (đpcm)
chứng minh chia hết bằng phương pháp quy nạp
10n-4n+3n chia hết cho 9
\(\forall n\) nguyên dương,c/m:\(4^n+15n-1⋮9\)
(chứng minh bằng phương pháp quy nạp)
Chứng minh bằng phương thức quy nạp : 62n+1 + 5n+2 chia hết cho 31 ( n\(\in\) N )
Xét n=0 => 62n+1 + 5n+2 = 31chia hết 31
Xét n=1 => 62n+1 + 5n+2 = 341 chia hết 31
Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3 + 5k+3
Ta có 62k+1 + 5k+2 = 36k.6+5k.25 chia hết 31
<=> 62k+3 + 5k+3 = 36k.216+5k.125
Xét hiệu : 62k+3 + 5k+3 − 62k+1 − 5k+2 = 36k.216+5k.125−36k.6−5k.25
= 36k.210+5k.100 = 36k.207+5k.93−7(36k−5k)
Có 217 chia hết 31, 93 chia hết 31và 36k−5k chia hết 36 - 5 = 31
=> 62n+3 + 5k+3 − 62k+1 − 5k+2 chia hết 31.
Mà 62k+1 + 5k+2 chia hết 31 nên 62k+3 + 5k+3 chia hết 31
Phép quy nạp được chứng minh hoàn toàn,ta có đpcm
Chứng minh bằng giả thiết quy nạp :
10n + 18n - 1 chia hết cho 27 ( n \(\in\) N* )
bài này áp dụng phương pháp quy nạp 2 lần.
.................................
chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng)
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27.
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1
= (10^k+18k-1)+9*10^k+18
= (10^k+18k-1)+9(10^k+2)
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27.
Chứng minh 9(10^k+2) chia hết cho 27.
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng)
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27.
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27.
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2)
= 9(10^m+2) +81*10^m
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27
=>9(10^k+2) chia hết cho 27
=>10^(k+1)+18(k+1)-1 chia hết cho 27
=>10^n+18n-1 chia hết cho 27=> đpcm