Cho hai số x, y là các cặp số nguyên sao cho: |x| + |y| = 2. Số cặp (x, y) thỏa mãn là
Cho hai số x, y là các cặp số nguyên sao cho: |x| + |y| = 2. Số cặp (x, y) thỏa mãn là
Vì x,y nguyên mà |x| + |y| = 2
<= > x , y \(\le\) 2
TH1: |x| = 0 ; |y| = 2 => có 2 trường hợp
TH2: |x| = 1 ; |y| = 1 => có 4 trường hợp
TH3: |x| = 2 ; |y| = 0 => Có 2 trường hợp
Vậy có tất cả: 2 + 4 + 2= 8 trường hợp
TH1 : x = 1 và y = 2
TH2 : x = -1 và y = -1
TH3 : x = -2 hoặc 2 và y = 0
TH4 : x= 0 và y = -2 hoặc 2
**** đúng nha
|x|,|y| có thể lần lượt là 0;2, 1;1 hoặc 2;0
Vậy có 3 cặp (x,y) thỏa mãn
Cho hai số x, y là các cặp số nguyên sao cho: |x| + |y| = 2. Số cặp (x, y) thỏa mãn là
TH1 : x=1 và y=2
TH2 : x= -1 và y= -1
TH3 :x=-2 hoặc 2 và y=0
TH4 : x=0 và y = -2 hoặc 2
Cho hai số x, y là các số nguyên sao cho |x| + |y| = 2. Số cặp số x, y thỏa mãn là
cho hai số x;y là các số nguyên sao cho |x|+|y|=2 có số cặp thỏa mãn là
đáp án của mình là 4 cặp các bạn làm đúng rồi
Cho hai số x,y là các số nguyên sao cho: |x|+|y|=2 Số cặp số (x,y) thỏa mãn là
cho 2 số x và y là các số nguyên sao cho |x| + |y| = 2 . Số cặp (x;y) thỏa mãn là ?
Ta thấy: \(2=0+2=2+0=1+1\)
Trường hợp 1:
Với \(|x|=0\)thì \(x=0\)
\(|y|=2\)thì \(y=-2\) hoặc \(2\)
=> Với trường hợp 1 thì có hai cặp 9 x, y ) thỏa mãn là:
\(x=0;y=-2\)và \(x=0;y=2\)
Trường hợp 2:
Với \(|x|=2\)thì \(x=-2\)hoặc \(2\)
\(|y|=0\)thì \(y=0\)
=> Với trường hợp 2 thì có cặp ( x , y ) thỏa mãn là:
\(x=-2;y=0\)và \(x=2;y=0\)
Trường hợp 3:
Với \(|x|=1\)thì \(x=-1\)hoặc \(1\)
\(|y|=1\)thì \(y=-1\)hoặc \(1\)
=> Với trường hợp 3 thì có 4 cặp ( x , y ) thỏa mãn là:
\(x=1;y=-1\)
\(x=-1;y=1\)
\(x=1;y=-1\)
\(x=1;y=1\)
Vậy qua 3 trường hợp thì có \(4+2+2=8\)cặp ( x , y ) thỏa mãn yêu cầu của đề bài
Cho 2 số x,y là các số nguyên sao cho | x|+| y| =5.Tìm số cặp ( x,y ) thỏa mãn
Cho x;y là các số nguyên sao cho |x| + |y| = 5
Số cặp số nguyên (x;y) thỏa mãn là.....
Cho hai số là các số nguyên sao cho:[x]+[Y] Số cặp số (x;y) thỏa mãn là