Chứng minh S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8 chia hết cho -6
Chứng minh rằng: S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8 chia hết cho (-6)
*)S=2+22+23+24+.....+28
Vì các số hạng của S chia hết chia hết cho 2
*) S=2+22+23+24+.....+28
=> S=(2+22)+(23+24)+.....+(27+28)
=> S=2(1+2)+23(1+2)+....+27(1+2)
=> S=2.3+23.3+.....+27.3
=> S=3(2+23+....+27)
=> S chia hết cho 3
Ta có 2 và 3 là 2 số nguyên tố cùng nhau => S chia hết cho 2.3=6
=> S chia hết cho -6 (đpcm)
\(S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+2^7\left(1+2\right)\)
\(=2.3+2^3.3+2^5.6+2^7.3\)
\(=6+2^2.6+2^4.6+2^6.6⋮6\)
Vậy \(S⋮6\)
\(#hoktot\)
Dễ dàng cmđ S chia hết -2 (1)
Ta đi cm S chia hết 3
Có 2+2^2=(2+1)+(2^2-1)
Có 2+1 chia hết cho 3
2^2-1 chia hết 2+1=3 ( Do 2 chẵn )
Từ 2 điều trên => 2+2^2 chia hết 3
Tương tự 2^3+2^4 ; 2^5+2^6;2^7+2^8 chia hết 3
=> S chia hết 3 (2)
(1);(2) => S chia hết -6 (vì UCLN(3;-2)=1)
Vậy...
Chúc học tốt nhaaa
Cho S=1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9. Hãy chứng minh S chia hết cho 3.
S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+(2^8+2^9)
=1.(1+2)+2^2.(1+2)+2^4.(1+2)+2^6.(1+2)+2^8.(1+2)
=1.3+2^2.3+2^4.3+2^6.3+2^8.3
=3.(1+2^2+2^4+2^6+2^8) chia hết cho 3
S=1+2+2^2+2^3+2^4+2^5+2^6+2^7
S= (1+2) + (2^2+2^3) + (2^4+2^5) + (2^6+2^7)
S=3 + 3.4 + 3.16 + 3.64
S=255
Vì 255 chia hết cho 3
=> S sẽ chia hết cho 3
Người lạ ơi bố thí cho tôi ^_^
\(S\) = 1 + 2 + 22+ 23 + 24 + 25 + 26 + 27 + 28 + 29
\(\Rightarrow\)\(S\)= 20 + 21 + 22+ 23 + 24 + 25 + 26 + 27 + 28 + 29
\(\Rightarrow\)\(S\)= ( 20 + 21 ) + ( 22+ 23) + ( 24 + 25 ) + ( 26 + 27 ) + ( 28 + 29 )
\(\Rightarrow\) \(S\)= 20 . ( 20 + 21 ) + 22 . ( 20 + 21 ) + 24 . ( 20 + 21 ) + 26 . ( 20 + 21 ) + 28 . ( 20 + 21 )
\(\Rightarrow\)\(S\)= 20 . 3 + 22 . 3 + 24 . 3 + 26 . 3 + 28 . 3
\(\Rightarrow\)\(S\)= 3 . ( 20 + 22 + 24 + 26 + 28 ) \(⋮\)3 ( đpcm )
A) Chứng minh: A=2^1+2^2+2^3+2^4+.........+2^2010 chia hết cho 3 và 7
B)Chứng minh:B=3^1+3^2+3^3+3^4+..........+2^2010 chia hết cho 4 và 13
C) Chứng minh C=5^1+5^2+5^3+5^4+.......+5^2010 chia hết cho 6 và 31
D) Chứng minh D=7^1+7^2+7^3+7^4+........+7^2010 chia hết cho 8 và 57
cho a= 2+2^2+2^3+2^4+2^5+2^6+2^7+2^7+2^8+2^9 chia hết cho 7
cho b= 4+4^2+....+ 4^10 chia hết cho 6
cho b= 4+4^2+..+ 4^10 chia hết cho 17
chứng minh
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4 VÀ 13
Chứng minh rằng
a.5^1 - 5^9 + 5^8 chia hết cho 7
b.6 + 6^2 + 6^3 + 6^4 + .........+ 6^9 + 6^10 chia hết cho 7
c.1+2+3+3^2+3^3+....+3^99 chia hết cho 4
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)
\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)
\(5^8-5^7-1\equiv5\left(mod7\right):v\)
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+\cdot\cdot\cdot+6^9\right)\)
\(⋮7\)
Chứng minh rằng s=2+2^2+2^3 +2^4 +2^5 +2^6 +2^7 +2^8 chia hết cho (-6)
AI LÀM ĐÚNG MÌNH TÍCH CHO!
1.a,chứng minh 12^4.54^2=36^5
b,10^6-5^7 chia hết cho 59
c,cho S=1+3^1+3^2+3^3…+3^99 chứng minh S chia hết cho 4, S chia hết cho 40
2. Tính: 10^4.27^3/6^4.15^4
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!