cho 2^0+2^1+...+2^100 khi chia cho 15 có số dư là...
Số dư của A=2^0+2^1+2^2+...+2^100 khi chia cho 15 là
A=1+(21+22+23+24)+...+(297+298+299+2100)
A=1+2(1+2+22+23)+...+297(1+2+22+23)
A=1+(1+2+22+23)(2+...+297)
A=1+15(2+...+297)
Mà 15(2+...+297) chia hết cho 15
=> A chia 15 dư 1
Ta có:
A= 20 + 21 + 22 + 23 + ... + 2100
= 1 + 21 + 22 + 23 + ... + 2100
= 1 + (21 + 22 + 23 + 24) + ... + 2100
= 1 + (21 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + 290 x 210
= 1 + (21 + 22 + 23 + 24) + 24(21 + 22 + 23 + 24) + ... + 290(21 + 22 + 23 + 24)
= 1 + 30 + 24 x 30 + ... + 290 x 30
= 1 + 30(1 + 24 + ... + 290)
Vì: 30 chia hết cho 15. Suy ra: 30(1 + 24 + ... + 290) chia hết cho 15
Suy ra: 1 + 30(1 + 24 + ... + 290) chia cho 15 dư 1
Vậy: A= 20 + 21 + 22 + 23 + ... + 2100 chia cho 15 dư 1
số dư của A=2^0+2^1+2^2+2^3+...+2^100 khi chia cho 15 là
A = \(\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
= \(\left(1+2+4+8\right)+2^4.\left(1+2+4+8\right)+...+2^{97}.\left(1+2+4+8\right)\)
= \(15+2^4.15+...+2^{97}.15\)
= \(15.\left(1+2^4+...+2^{97}\right)\text{ chia hết cho 15}\)
=> A chia hết cho 15
=> Số dư khi chia A cho 15 là 0.
Số dư của 2^0+2^1+2^3+2^4+...+2^100 khi chia cho 15 là
số dư của A=2^0+2^1+2^2+2^3+...+2^100 khi chia cho 15 là gì
Số dư của a = 2 ^0 + 2^1 + 2^2 + .... + 2^100 khi chia cho 15 là .....
Số dư của A=2^0+2^1+2^2+2^3+...+2^100 khi chia cho 15 là .
Nhanh lên nhé
Ta có:
A = 1 + ( 2 + 22 + 23 + 24 ) + ... + 296( 2 + 22 + 23 + 24 )
A = 1 + 30 + ... + 296 . 30
A = 1 + 30( 1 + 24 + ... + 296 )
Mà 30 chia hết cho 15 nên 30( 1 + 24 + ... + 296 ) chia hết cho 15
\(⇒\) 1 + 30( 1 + 24 + ... + 296 ) : 15 dư 1
\(⇒\) A : 15 dư 1
số dư khi A= 2^0 + 2^1 + 2^2 + ... +2^100 khi chia cho 15
A= 2^0 + 2^1 + 2^2 + ... +2^100
=20+(21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
=1+15+25.(1+2+22+23)+...+297.(1+2+22+23)
=1+15+25.15+....+297.15
=1+15.(1+25+...+297)
Suy ra: số dư khi chia A cho 15 là 1
A = (1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+.....+(2^97+2^98+2^99+2^100)
=15+2^4 .(1+2+2^2+2^3)+.....+2^97.(1+2+2^2+2^3)
=15+2^4.15+....+2^97.15
=15.(1+2+2^2+2^3) :15
Vì 15 chia hết cho 15
Suy ra 15.(1+2+2^2+2^3) chia hết cho 15
Vậy A chia 15 dư 0
Số dư của 2^0+2^1+2^2+2^3+...+2^100 khi chia cho 15
2^0 + 2^1 + 2^2+ 2^3 + ..... +2^100
= (2^1+2^2+2^3+2^4) + ... + (2^97 + 2^98 + 2^99 + 2^100) + 1
= 2.15 + 2^5.15+...+2^97.15 + 1
= 15.(2+2^5+...+2^97) + 1
Chia 15 dư 1
2^0+2^1+2^2+2^3+...+2^100
=1+(21+22+23+24)+.....+(297+298+299+2100)
=1+2.(1+2+22+23)+....+297.(1+2+22+23)
=1+2.15+....+297+15
=1+15.(2+...+297)
=>số dư là 1
Số dư của tổng 20+21+22+...+2100 khi chia cho 15 là ?
Tổng trên =\(2^{101}-2\)
Số trên chia cho 15=6
\(2^0+2^1+2^2+2^3+....+2^{100}=\left(2^1+2^2+2^3+2^4\right)+.......+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)+1\)\(=2.15+2^5.15+....+2^{97}.15+1=15.\left(2+2^5+....+2^{97}\right)+1\)
Vậy tổng chia cho 15 thì dư 1