Nồi : giúp tui với
Cho x,y thuộc Z
CMR : A = (2x+3y).(3x+2y) chia hết cho 5 thì A chia hết cho 25
CMR : A = (2x + 3y).(3x+2y) chia hết cho 5 thì A chia hết cho 25
cho x,y thuộc z
Vì A chia hết cho 5
=> 2x + 3y chia hết cho 5 hoặc 3x + 2y chia hết cho 5
TH1: Với 2x + 3y chia hết cho 5
=> 2x + 3y + 10x + 5y chia hết cho 5(10x ; 5y chia hết cho 5)
=> 12x + 8y chia hết cho 5
4(3x + 2y) chia hết cho 5
Mà UCLN(4;5) = 1
Do đó 3x + 2y chia hết cho 5
Vì 3x + 2y và 2x + 3y đều chia hết cho 5
=> A chia hết cho 52 = 25
TH2: 3x + 2y chia hết cho 5
3x + 2y +5x + 10y chia hết cho 5 (5x ; 10y chia hết cho 5)
8x + 12y chia hết cho 5
4(2x + 3y) chia hết cho 5
Mà UCLN(4 ; 5) = 1
=> 2x + 3y chia hết cho 5
Vì 2x + 3y và 3x+ 2y đều chia hết cho 5
=> A chia hết cho 52 = 25
Từ TH1 và TH2 => ĐPCM (điều phải chứng minh)
Cho x,y thuộc Z
CMR : A = (2x + 3y).(3x+2y) chia hết cho 5 thì A chia hết cho 25
Ta có:
2x + 3y chia hết cho 5
2x + 3y + 10x + 5y chia hết cho 5 (vì 10x ; 5y chia hết cho 5)
12x + 8y chia hết cho 5
3(3x +2y) chia hết cho 5
Mà UCLN(3 ; 5) = 1
Do đó 3x + 2y chia hết cho 5
< = > 2x + 3y và 3x + 2y đều chia hết cho 5
< = > A= (2x+ 3y)(2x + 2y) chia hết cho 5.5 = 25
=> ĐPCM
Vì A chia hết cho 5
=> 2x + 3y chia hết cho 5 hoặc 3x+ 2y chia hết cho 5
TH1: 2x+ 3y chia hết cho 5
2x + 3y + 10x + 5y chia hết cho 5 (10x ; 5y đều chia hết cho 5)
12x + 8y chia hết cho 5
4(3x + 2y) chia hết cho 5
Mà UCLN(4 ; 5) = 1
=> 3x+ 2y chia hết cho 5
Vì 2x + 3y và 3x + 2y đều chia hết cho 5
= > A chia hết cho 25
TH2: 3x+ 2y chia hết cho 5
3x + 5x + 2y + 10y chia hết cho 5 (5x ; 10y chia hết cho 5)
8x + 12y chia hết cho 5
4(2x + 3y) chia hết cho 5
Mà UCLN(4 ; 5) = 1
=> 2x+ 3y chia hết cho 5
Vì 2x+ 3y và 3x + 2y đều chia hết cho 5
=> A chia hết cho 25
Từ TH1 và TH2 => ĐPCM
cho x, y, z thuộc Z. Chứng min rằng:
a, Nếu 3x^2+2y chia hết cho 11 thì 15x^2-12y chia hết cho 11
b, Nếu 2x+3y^2 chia hết cho 7 thì 6x+16y^2 chia hết cho 7
a) \(3x^2+2y⋮11\Leftrightarrow16\left(3x^2+2y\right)⋮11\Leftrightarrow48x^2-33x^2+32y-44y⋮11\)
\(\Leftrightarrow15x^2-12y⋮11\)
b) \(2x+3y^2⋮7\Leftrightarrow10\left(2x+3y^2\right)⋮7\Leftrightarrow20x-14x+30y^2-14y^2⋮7\)
\(\Leftrightarrow6x+16y^2⋮7\)
cho x, y, z thuộc Z. Chứng min rằng:
a, Nếu 3x^2+2y chia hết cho 11 thì 15x^2-12y chia hết cho 11
b, Nếu 2x+3y^2 chia hết cho 7 thì 6x+16y^2 chia hết cho 7
Lời giải:
a.
\(3x^2+2y\vdots 11\Leftrightarrow 5(3x^2+2y)\vdots 11\)
$\Leftrightarrow 15x^2+10y\vdots 11$
$\Leftrightarrow 15x^2+10y-22y\vdots 11$
$\Leftrightarrow 15x^2-12y\vdots 11$ (đpcm)
b.
$2x+3y^2\vdots 7$
$\Leftrightarrow 3(2x+3y^2)\vdots 7$
$\Leftrightarrow 6x+9y^2\vdots 7$
$\Leftrightarrow 6x+9y^2+7y^2\vdots 7$
$\Leftrightarrow 6x+16y^2\vdots 7$ (đpcm)
cho x;y thuộc N .CMR nếu x+3y chia hết cho 7 thì 3x +2y chia hết cho7
Chứng minh rằng :
a/ Nếu 3x+5y chia hết cho 7 ( a;b thuộc N ) thì x +4y chia hết cho 7 ( x;y thuộc N )
Điều ngược lại có đúng không ?
b/ Nếu 2x+3y chia hết cho 17 ( a;b thuộc N ) thì 9x+5y chia hết cho 17( x;y thuộc N )
Điều ngược lại có đúng không ?
Cho x,y thuộc z,CMR:
a, Nếu A=5x+y chia hết cho 19 thì B =4x - 3y chia hết cho 19
b,Nếu C=4x+3y chia hết cho 13 thì D=7x +2y chia hết cho 13
Cho x,y thuộc Z . CMR :
a) Nếu A= 5x +y chia hết cho 9 thì B = 4x -3y cũng chia hết cho 9
b) Nếu C = 4x + 3y chia hết cho 13 thì D = 7x +2y cũng chia hết cho 13
Cho x, y thuộc Z. CMR:
a) Nếu A = 5x + y chia hết cho 19 thì B = 4x - 3y chia hết cho 19
b) Nếu B = 4x + 3y chia hết cho 13 thì D = 7x + 2y chia hết cho 13