aaabbb gạch ngang trên đầu chứng minh aaaaaa chia hết 1001
1) chứng minh aaa ( có gạch ngang trên đầu ) chia hết cho 37
2) chứng minh (ab-ba) ( có gạch ngang trên đấu ) chia hết cho 9
1.aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
Chứng minh aaabbb gạch đầu luôn luôn chia hết cho 37
Ta có:
aaabbb = 1000aaa + bbb
= 1000.111a + 111b
= 111(1000a + b)
= 37.3.(1000a + b)
Vậy aaabbb luôn chia hết cho 37 (đpcm)
Kết quả của phép chia aaabbb : (1000a+b) là? (aaabbb có gạch ngang trên đầu)
1000a+b=a00b
aaabbb : a00b =111
Tick nha!!
4. chứng tỏ số :
a. aaa có dấu gạch trên đầu chia hết cho 37
b. abcabc có dấu gạch trên đầu chia hết cho 11
c. aaaaaa có dấu gạch trên đầu chia hết cho 7
5. chứng tỏ :
ab có dấu gạch trên đầu - ba có dấu gạch trên đầu chia hết cho 9
a. aaa có dấu gạch trên đầu chia hết cho 37
Ta có aaa=a.37
aaa= a.3.37 chia hết cho 37
Hk tốt
Chứng tỏ rằng số có dạng aaaaaa gạch trên đầu bao giờ cũng chia hết cho 7
aaaaaa = 111111 . a = 15873 . 7 . a
Vậy aaaaaa chia hết cho 7.
ta có aaaaaa=100000.a+10000a+1000a+100a+10a+1
=111111a
mà 111111:7=15873
=> aaaaaa:7=15873a
=>aaaaaa chia hết cho 7
Bài 1: Chứng tỏ rằng với mọi số tự nhiên n ta co :
a) A = (n + 100) . (n + 101) chia hết cho 2
b) B = ( 7n + 5 ) . ( 9n + 10 ) chia hết cho 2
c) C = ( n+ 200 ) . ( n+ 2015 ) chia hết cho 2
Bài 2 : Chứng tỏ rằng với mọi chữ số a,b ta có :
a) aaabbb ( gạch đầu ) chia hết cho 37 và 3
b) ab ( gạch đầu ) + ba ( gạch đầu ) chia hết cho 11
Bài 3 : Hãy viết thêm 3 chữ số vào bên phải số 123 để thu được 1 số chia hết cho 1001
3) Gọi 3 chữ số là a;b;c
=> 123abc chia hết cho 1001
123abc = 123.1000 + abc = 123.1001 - 123 + abc = 123.1001 + (abc - 123) chia hết cho 1001
=> abc - 123 chia hết cho 1001 => abc -123 = 1001.k => abc = 1001.k + 123
Chọn k =0 => abc = 123
Chọn k = 1 => abc = 1124 Loại . Từ k > 1 đều không có số nào thỏa mãn
Vậy Viết thêm 3 chữ số là 1;2;3
chứng minh rằng 2a+3b+c ko chia hết cho 7 thì abc gạch ngang trên đầu cũng ko chia hết cho 7
chứng minh rằng nếu ( ab + cd) chia hết cho 11 thì abcd chia hết cho 11
(có gạch ngang trên đầu)
Cho N=dcba(có gạch ngang trên đầu) chứng minh rằng nếu N chia hết cho 29 thì (a+3b+9c+27d) cũng chia hết cho 9