150 =x + 98 x 1
\(Bài1:x+y=\frac{1}{2},y+z=\frac{1}{3},z+x=\frac{1}{4}\)
\(Bai2:\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
ta có
x+y+y+z+z+x=\(\frac{13}{12}\)
2(x+y+z)=\(\frac{13}{12}\)
=>x+y+z=\(\frac{13}{24}\)
z=(x+y+z)-(x+y)
y=y+z-z
x=x+Y-y
(1-\(\frac{1}{97}\))x(1-\(\frac{1}{98}\))x...x(1-\(\frac{1}{1000}\))=?
\(\frac{x+1}{97}+\frac{x+1}{98}=\frac{x+1}{99}+\frac{x+1}{100}\)
\(\frac{x+1}{97}\) + \(\frac{x+1}{98}\) - \(\frac{x+1}{99}\) - \(\frac{x+1}{100}\) \(\Leftrightarrow\) (x+1).(1/97 + 1/98 - 1/99 - 1/100) . Vì (1/97 = 1/ 98 - 1/99 - 1/100) \(\ne\) 0 \(\Rightarrow\) x+ 1= 0 \(\Leftrightarrow\) x= -1
Tìm x:
\(\frac{x+1}{99}\)+\(\frac{x+2}{98}\)+\(\frac{x+3}{97}\)+3=0
\(\Leftrightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=0\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{97}+\frac{1}{98}+\frac{1}{99}\right)=0\)
\(\Leftrightarrow x+100=0\text{ (do }\frac{1}{97}+\frac{1}{98}+\frac{1}{99}\ne0\text{)}\)
\(\Leftrightarrow x=-100\)
bn tự chép đề lại nha
từ đề bài suy ra \(1+\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+3=1+1+1+0=3\)
suy ra \(\frac{x+1+99}{99}+\frac{x+2+98}{98}+\frac{x+3+97}{97}+3=3\)
suy ra \(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=3-3=0\)
suy ra \(\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
mà 1/99 +1/98+1/97 lớn hơn 0
từ 2 điều trên suy ra x+100=0 suy ra x=-100
Tính giá trị của biểu thức:
( 1 - \(\frac{1}{97}\) ) x ( 1 - \(\frac{1}{98}\) ) x ... x ( 1 - \(\frac{1}{1000}\))
( 1 - \(\frac{1}{97}\)) x ( 1 - \(\frac{1}{98}\)) x ..... x ( 1 - \(\frac{1}{1000}\)) = ?
các bạn giải cụ thể ra giùm mình
(1-1/97),(1-1/98).....(1-1/1000)
=96/97.97/98.....999/1000
=(96.97...999)/(97.98...1000)
=96/1000=12/125
Dấu . Là dấu nhân nhé
=\(\frac{96}{97}\)x\(\frac{97}{98}\)x...x\(\frac{999}{1000}\)
triệt tiêu đi ta có:
=\(\frac{96}{1000}\)=\(\frac{12}{125}\)
tick nhé!!
tính GTBT của \(B=1:\left(\left(\frac{\sqrt{x}+3}{x+\sqrt{x}+1}-\frac{\sqrt{x}-3}{x\sqrt{x}-1}\right).\frac{x\sqrt{x}-\sqrt{x}+x^2+1}{\sqrt{x}}\right)\) tại \(x=98+20\sqrt{6}\)
Bài này chắc tác giả đánh sai tử thức của phân thức cuối cùng, biểu thức B phải là \(B=\frac{1}{C}\) trong đó \(C=\left(\frac{\sqrt{x}+3}{x+\sqrt{x}+1}-\frac{\sqrt{x}-3}{x\sqrt{x}-1}\right)\cdot\frac{x\sqrt{x}-\sqrt{x}+x^2-1}{\sqrt{x}}\)
Ta có \(C=\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}-\frac{\left(\sqrt{x}-3\right)}{x\sqrt{x}-1}\right)\cdot\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{x+\sqrt{x}}{x\sqrt{x}-1}\cdot\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\left(\sqrt{x}+1\right)^2\)
Thành thử ta được \(C=\left(\sqrt{x}+1\right)^2\)
Ta có \(x=98+20\sqrt{6}=\left(5\sqrt{2}+4\sqrt{3}\right)^2\to\sqrt{x}=5\sqrt{2}+4\sqrt{3}\to\)
hay \(C=\left(\sqrt{x}+1\right)^2=x+2\sqrt{x}+1=99+20\sqrt{6}+2\left(5\sqrt{2}+4\sqrt{3}\right)\)
\(=99+20\sqrt{6}+10\sqrt{2}+8\sqrt{3}\to B=\frac{1}{C}=\frac{1}{99+20\sqrt{6}+10\sqrt{2}+8\sqrt{3}}\)
\(\left(1-\frac{1}{97}\right)x\left(1-\frac{1}{98}\right)x...x\left(1-\frac{1}{1000}\right)\)
\(\left(1-\frac{1}{97}\right)x\left(1-\frac{1}{98}\right)x...x\left(1-\frac{1}{1000}\right)\)
\(\frac{96}{97}\cdot x\cdot\frac{97}{98}\cdot x\cdot...\cdot x\cdot\frac{999}{1000}\)
\(\frac{96}{97}\cdot\frac{97}{98}\cdot...\cdot\frac{999}{1000}\cdot x^{903}\)
\(\frac{96}{1000}\cdot x^{903}\)
\(\frac{12}{125}\cdot x^{903}\)
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=0\)
Vậy x+1;x+2;x+3;x+4=0
=> x=-1;-2;-3;-4
nha bạn
\(\frac{x+1}{99}+1\frac{x+2}{98}+1\frac{x+3}{97}+1\frac{x+4}{96}+1=0\)
\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
\(x+100=0\)
\(x=-100\)