Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hưngchibi
Xem chi tiết
Hoàng Phúc
Xem chi tiết
alibaba nguyễn
6 tháng 11 2016 lúc 6:36

Ta có từ n3 + 1 đến (n + 1)3 - 1 có

(n + 1)3 - 1 - n3 - 1 + 1 = 3n2 + 3n số có phần nguyên bằng n

Áp dụng vào cái ban đầu ta có

\(=\frac{3.1^2+3.1}{1}+\frac{3.2^2+3.2}{2}+...+\frac{3.2011^2+3.2011}{2011}\)

= 3.1 + 3 + 3.2 + 3 + ...+ 3.2011 + 3

= 3.2011 + 3(1 + 2 +...+ 2011)

= 6075231

Kamen rider kiva
5 tháng 11 2016 lúc 4:26

to thấy bài dễ mà 

alibaba nguyễn
5 tháng 11 2016 lúc 8:09

Dễ thì làm đi bạn

Minh Triều
Xem chi tiết
Trần Thị Loan
9 tháng 8 2015 lúc 19:59

Nhận xét: \(\left(n+1\right)\sqrt{n}=\sqrt{\left(n+1\right)^2n}=\sqrt{\left(n+1\right)n\left(n+1\right)};n\sqrt{n+1}=\sqrt{n^2\left(n+1\right)}=\sqrt{n.n\left(n+1\right)}\)

=> \(\left(n+1\right)\sqrt{n}>n\sqrt{n+1}\) => \(2.\left(n+1\right)\sqrt{n}>\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\)

=> \(\frac{2}{2.\left(n+1\right)\sqrt{n}}

Dương Tũn
9 tháng 8 2015 lúc 19:57

Ta có:

\(\frac{1}{\left(n-1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)

Hoàng Bá Nhật
Xem chi tiết
Hoàng Bá Nhật
28 tháng 11 2019 lúc 10:43

chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)

Khách vãng lai đã xóa
Bùi Anh Tuấn
28 tháng 11 2019 lúc 11:21

a, Ta có

\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)

mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, áp dụng bđt ta có

\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)

\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)

\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..

\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)

\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
28 tháng 11 2019 lúc 12:01

Bạn Nhật sai đề bài

Câu. a. Dòng thứ nhất xuống dòng thứ 2. Em chú ý mẫu số sai rồi.

b. Công thức có số 2 trên tử số. Mà em ko đưa số 2 vào thì sao áp dụng dc công thức?

Khách vãng lai đã xóa
tUấN hÙnG
Xem chi tiết
Châu Đặng Huỳnh Bảo
Xem chi tiết
Cô bé hạnh phúc
Xem chi tiết
Phan thu trang
Xem chi tiết
Akai Haruma
8 tháng 2 2017 lúc 21:25

Câu 2)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)

Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)

Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)

Akai Haruma
8 tháng 2 2017 lúc 23:38

Câu 3:

\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)

\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)

Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)

Akai Haruma
9 tháng 2 2017 lúc 0:58

Câu 6)

\(I=-\int \frac{\left ( 1-\frac{1}{x^2} \right )dx}{x^2+2+\frac{1}{x^2}}=-\int \frac{d\left ( x+\frac{1}{x} \right )}{\left ( x+\frac{1}{x} \right )^2}=-\frac{1}{x+\frac{1}{x}}+c=-\frac{x}{x^2+1}+c\)

Câu 8)

\(I=\int \ln \left(\frac{x+1}{x-1}\right)dx=\int \ln (x+1)dx-\int \ln (x-1)dx\)

\(\Leftrightarrow I=\int \ln (x+1)d(x+1)-\int \ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\) ta có:

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t+c\)

\(\Rightarrow I=(x+1)\ln (x+1)-(x+1)-(x-1)\ln (x-1)+x-1+c\)

\(\Leftrightarrow I=(x+1)\ln(x+1)-(x-1)\ln(x-1)+c\)

Bui Cam Lan Bui
Xem chi tiết
Trần Thị Loan
20 tháng 9 2015 lúc 23:11

Xét số hạng tổng quát \(\frac{n+1}{n}=1+\frac{1}{n}\) . Vì \(0