Cho A=1/√1+1/√2+1/√3+...+1/√100
So sánh A với 10
S= 1/3 - 2/3^2 + 3/3^3 - 4/3^4 +..... + 99/3^99 - 100/3^100
So sánh S và 1/5
1 cho day so 6,24,60,120,210,...... tinh tong 100so hang dau
2) A= 3/4*7+3/7*10+.....+3/73*76
giup minh voi nhanh len nha minh tich cho
1/
6 = 1*2*3
24 = 2*3*4
.......
Số thứ 100: 100*101*102
TỔng dãy trên là A thì bằng:
A = 1*2*3 + 2*3*4 + ..... + 100*101*102
4A = 1*2*3*4 + 2*3*4*4 + .... + 100*101*102*4
4A = [1*2*3*4 - 0*1*2*3]+ [2*3*4*5 - 1*2*3*4]+ ...+[100*101*102*103 - 99*100*101*102]
4A = 0*1*2*3 + [1*2*3*4-1*2*3*4]+[2*3*4*5-2*3*4*5]+..........+[99*100*101*101-99*100*101*102] + 100*101*102*103
4A = 100*101*102*103
A = 25*101*102*103 = 26527650
2/
\(A=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{73\cdot76}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{73}-\frac{1}{76}\)
\(A=\frac{1}{4}-\frac{1}{76}=\frac{9}{38}\)
P/s: Vì tử bằng khoẳng cách dưới mẫu nên ta có thể rút gọn nhanh như vậy
2) \(A=\frac{3}{4.7}+\frac{3}{7.10}+........+\frac{3}{73.76}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.......+\frac{1}{73}-\frac{1}{76}\)
\(A=\frac{1}{3}-\frac{1}{76}\)
\(A=\frac{73}{228}\)
GIÚP MÌNH VỚI CÁC BẠN ƠI !
BÀI 1:
Cho A =1/5+1/5^2+1/5^3+...+1/5^99+1/5^100
a.Tính A?
So sánh A với 1/4
BÀI 2 :
So sánh :
a. A=9/a^2014+7/a^2014 và B=8/a^2014+8/a^2013 với A thuộc N*
b . So sánh A và B với A=10^2009+1/10^2010+1 và B=10^2010+1/10^2011+1
c . So sánh A=10^2016+1/ 10^2015+1 ; B=10^2015+1/10^2014+1
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
Cho A=1/2!+2/3!+3/4!+...+9/10!.So sánh A với 1
Ta có :
\(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{9}{10!}\)
\(A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{10-1}{10!}\)
\(A=\left(\frac{2}{2!}-\frac{1}{2!}\right)+\left(\frac{3}{3!}-\frac{1}{3!}\right)+\left(\frac{4}{4!}-\frac{1}{4!}\right)+...+\left(\frac{10}{10!}-\frac{1}{10!}\right)\)
\(A=\left(1-\frac{1}{2!}\right)+\left(\frac{1}{2!}-\frac{1}{3!}\right)+\left(\frac{1}{3!}-\frac{1}{4!}\right)+...+\left(\frac{1}{9!}-\frac{1}{10!}\right)\)
\(A=1-\frac{1}{10!}< 1\)
vậy A < 1 vì \(0< \frac{1}{10!}< 1\)
Cho A=1/√1+1/√2+1/√3+...+1/√100
So sánh A với 10
cho A =3/1^2*2^2+5/2^2*3^2+...+19/^2*10^2.so sánh A với 1
Áp dụng tính chất (a - b)(a + b) = a2 + ab - ab - b2 = a2 - b2
Ta có : \(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{19}{\left(9.10\right)^2}\)
\(=\frac{1}{1.2}.\frac{3}{1.2}+\frac{1}{2.3}.\frac{5}{2.3}+...+\frac{1}{9.10}.\frac{19}{9.10}\)
\(=\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)\left(\frac{1}{2}+\frac{1}{3}\right)+...+\left(\frac{1}{9}-\frac{1}{10}\right)\left(\frac{1}{9}+\frac{1}{10}\right)\)
\(=1^2-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2-\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{9}\right)^2-\left(\frac{1}{10}\right)^2=1^2-\left(\frac{1}{10}\right)^2=1-\frac{1}{100}=\frac{99}{100}< 1\)
1. Cho A = \(\dfrac{10^{2013}+1}{10^{2014}+1}\) và B = \(\dfrac{10^{2014}+1}{10^{2015}+1}\). Hãy so sánh A và B
2. so sánh ; 2\(^{332}\) và 3\(^{223}\)
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)
a. So sánh C và D biết: C = 1957/ 2007 với D = 1935/ 1985
b. Cho: A = 2016 mũ 2016 + 2/ 2016 mũ 2016 - 1 và B = 2016 mũ 2016/2016 mũ 2016 - 3. Hãy so sánh A và B
c.So sánh M và N biết: M = 10 mũ 2018 + 1/ 10 mũ 2019 + 1 ; N = 10 mũ 2019 +1/ 10 mũ 2020 + 1
MAI THI RỒI MÀ CHƯA BIẾT GIẢI BÀI NÀY NHƯ THẾ NÀO ?
NÊN NHỜ MỌI NGƯỜI GIẢI GIÚP. CẢM ƠN TRƯỚC
so sánh
a)3/-10 ; 1/-2 ; 4/-5 b)2/-10 ;7/-5 ; -1/2 c)7/-4 ; -2/5 ; -3/10
giúp tớ với tớ vote cho
`3/(-10) ; 1/(-2) ; 4/(-5)=> -3/10 ; -1/2 ; -4/5`
ta có : `-1/2=(-1xx5)/(2xx5)=-5/10 ; -4/5=(-4xx2)/(5xx2)=-8/10`
vậy `3/(-10) < 1/(-2) < 4/(-5)`
`--------------------`
`2/(-10) ; 7/(-5) ; -1/2=>-2/10 ;-7/5;-1/2`
ta có : `-7/5=(-7xx2)/(5xx2)=-14/10; -1/2=(-1xx5)/(2xx5)=-5/10`
vậy `2/(-10) < -1/2 < 7/(-5)`
`---------------------`
`7/(-4) ; -2/5 ; -3/10=> -7/4;-2/5;-3/10`
ta có : `-7/4=(-7xx5)/(4xx5)=-35/20 ; -2/5=(-2xx4)/(5xx4)=-8/20;-3/10=(-3xx2)/(10xx2)=-6/20`
vậy 7/(-4) > -2/5 > -3/10`