Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Thị Kim Hồng
Xem chi tiết
Nguyễn Vân Huyền
Xem chi tiết
Tưởng Lưu
27 tháng 12 2014 lúc 7:58

Thay hướng dẫn tiếp phần b nhé: 

Giả sử cả 3 số p;q;r đều không chia hết cho 3 thế thì p2;q2;r2 chia cho 3 chỉ dư 1 ( vì p;q;r nguyên tố)

Suy ra: p+ q+ rchia hết cho 3 mà p+ q+ r>3 suy ra p+ q+ rlà hợp số ( mâu thuẫn đề bài).

Vậy điều giả sử là sai suy ra trong 3 số tồn tại ít nhất một số chia hết cho 3

Không mất tính tổng quat giả sử p<q<r\(\Rightarrow\)p chia hết cho 3 mà p là số nguyên tố suy ra p = 3

Lại có: p;q;r là 3 số nguyên tố liên tiếp nên q = 5; r=7

Vậy (p;q;r) = (3;5;7) và các hoán vị 

Nguyễn Hải Nam
28 tháng 12 2014 lúc 11:22

b, Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1 

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( là hợp số, loại )

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( loại )

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ( 2 số còn lại chia 3 dư 1 ) loại vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ( 2 số còn lại chia hết cho 3 ) chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3

mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3. 

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 - 3 - 5 hoặc 3 - 5 - 7 

Với 3 số nguyên tố là 2 - 3 - 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ( là hợp số, loại )

Vậy 3 số nguyên tố cần tìm là 3 5 7 

Nguyễn Vân Huyền đã chọn câu trả lời này

dao minh hieu
1 tháng 4 2018 lúc 21:39

Vai trò của p,q,rp,q,r là như nhau nên giả sử p>q>rp>q>r
Xét p=2p=2,ta tìm được 3 số là 2;3;5.Không thỏa
Xét p=3p=3,ta tìm được 3 số là 3;5;7 thỏa
Xét p>3p>3
Bổ đề:Mọi số nguyên tố >3>3 nến đem bình phương lên thì luôn chia 3 dư 1
thật vậy các số nguyên tố lớn hơn 3 nện có dạng 3k+13k+1 hoặc 3k+23k+2
Nếu có dạng 3k+13k+1,ta có:(3k+1)2=9k2+6k+1≡1(mod3)(3k+1)2=9k2+6k+1≡1(mod3)
Nếu có dạng 3k+23k+2,ta có (3k+2)2=9k2+12k+4≡1(mod3)(3k+2)2=9k2+12k+4≡1(mod3)
Vậy nếu p>3p>3 thì các số q,r>3q,r>3nên khi bình phương lên đều dư 1
⇒p2+q2+r2≡0(mod3)⇒p2+q2+r2≡0(mod3)
Vậy ta có (3;5;7)(3;5;7) và các hoán vị

Haibara Ai
Xem chi tiết
Nhok Silver Bullet
Xem chi tiết
Đinh Tuấn Việt
22 tháng 7 2015 lúc 21:21

Bài 1 :

Gọi p là số nguyên tố phải tìm.

Ta có: p chia cho 60 thì số dư là hợp số $⇒$⇒ p = 60k + r = 22.3.5k + r  với k,r $∈$∈ N ; 0 < r < 60 và r là hợp số.

Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.

Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A =  {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}

Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}

Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}

Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.

Loại p = 169 = 132 là hợp số  chỉ có p = 109.

Số cần tìm là 109.

Hồ Ngọc Minh Châu Võ
22 tháng 7 2015 lúc 21:40

2)Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố) 
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5 
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn 
Vậy r cũng không thể là hợp số 
Kết luận: r=1 

Kudo Shinichi
30 tháng 10 2016 lúc 18:25

Gọi số nguyên tố là p, ta có: 

- p = 30k + r. Vì 30= 3.2.5

-30= 3.2.5.k + r

-Vì p là số nguyên tố nên r sẽ không chia hết cho 3,2,5.

-Các số không phải là hợp số  mà không chia hết cho 2 là: 1;3;5;7;9;11;13;15;17;19;21;23;25;27;29.

-Loại các số 3;9;15;21;27 vì những số này chia hết cho 3.

- Loại số 5 vì số này chia hết cho 5. Ta còn các số 1,7,13,17,19,29.

-Còn lại bạn tự khai thác nhé!

Lữ Vương Quý
Xem chi tiết
JOKER_Võ Văn Quốc
14 tháng 8 2016 lúc 15:08

Số 7

7=2+5=9-2

 βєsէ Ňαkɾσtɦ
14 tháng 8 2016 lúc 15:13

7-5=2

5+2=7

=> Số nguyên tố là 7 và 2

vũ thành trung
14 tháng 8 2016 lúc 15:16

5=2+3=7-2,.......

(còn rất nhiều số nguyên tố khác mà bằng tổng và hiệu 2 số nguyên tố)

Vũ Mạnh Hùng
Xem chi tiết
Me
12 tháng 9 2019 lúc 20:23

                                                                      Bài giải

TH1 : Ta có : \(p^{2+92}=p^{94}\)

\(\Rightarrow\text{ }p\in\varnothing\text{ vì }p^{94}\text{ }⋮\text{ }p\)

TH2 : Ta có : \(p^2+92\) là số nguyên tố \(\Rightarrow\text{ }p^2+92\) lẻ \(\Rightarrow\text{ }p^2\) lẻ \(\Rightarrow\text{ }p\) lẻ

Với p = 3 thì \(p^2+92=3^2+92=9+92=101\)

Với p = 5 thì \(p^2+92=5^2+92=25+92=117\)

Với p = 7 thì \(p^2+92=7^2+92=49+92=141\)

...

Vậy với p là số nguyên tố lẻ thì \(p^2+92\) cũng là số nguyên tố

Phước Lộc
12 tháng 10 2021 lúc 18:10

TH1 : Ta có : \(p^{2+92}=p^{94}\)

\(\Rightarrow p\in\varnothing\text{ vì }p^{94}⋮p\)

TH2 : Ta có \(p^2+92\) là số nguyên tố \(\Rightarrow p^2+92\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p\) lẻ

Với \(p=3\) thì \(p^2+92=3^2+92=9+92=101\)

Với \(p=5\) thì \(p^2+92=5^2+92=25+92=117\)

Với \(p=7\) thì \(p^2+92=7^2+92=49+93=141\)

.....

Vậy với \(p\) là số nguyên lẻ \(p^2+92\) cũng là số nguyên tố.

Khách vãng lai đã xóa
Vũ Mạnh Hùng
Xem chi tiết
zZz Cool Kid_new zZz
12 tháng 9 2019 lúc 20:39

Với \(p=2\) thì \(p^2+92=2^2+92=96\left(LHS\right)\)

Với \(p=3\) thì \(p^2+92=3^2+92=103\left(SNT\right)\)

Với \(p>3\) và p là số nguyên tố nên p có 2 dạng \(3k+1;3k+2\)

Với \(p=3k+1\Rightarrow p^2+92=\left(3k+1\right)^2+92=9k^2+6k+93⋮3\)

Với \(p=3k+2\Rightarrow p^2+92=\left(3k+2\right)^2+92=9k^2+12k+96⋮3\)

Vậy \(p=3\) 

Duong Ca
Xem chi tiết
Trân Duy Tri
29 tháng 10 2017 lúc 11:29

1:đáp án là 3

2:đáp án lần lượt là

x = 5

a = 3

b = 4

Nguyễn Thị Thanh Nga
Xem chi tiết
Trần Thị Loan
21 tháng 10 2015 lúc 20:54

1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại

=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a

+) Nếu a =  3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại

+) Nếu  > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)

Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại

Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều  là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại

Vậy a = 3. 1+ 2 = 5

Vậy chỉ có 2 số 2;5 thỏa mãn

 

Thân Khánh Hải Quân
25 tháng 4 2020 lúc 21:10

hay đó

Khách vãng lai đã xóa
HOÀNG HUỲNH NGỌC HOAN
13 tháng 11 2021 lúc 19:26

xịn quá

Khách vãng lai đã xóa
nguyen thien hoang
Xem chi tiết