Nếu n là một số tự nhiên không chia hết cho 3, thì n2 chia cho 3 có số dư là bao nhiêu?
một số tự nhiên chia cho 36 có dư
A) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 18 ?
B) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 4 và khi chia cho 9 dư 6?
C) nếu số dư là 18 thì số tự nhiên đó có thể là số chính phương được không ?
một số tự nhiên chia cho 36 có dư
A) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 18 ?
B) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 4 và khi chia cho 9 dư 6?
C) nếu số dư là 18 thì số tự nhiên đó có thể là số chính phương được không ?
một số tự nhiên chia cho 36 có dư
A) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 18 ?
B) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 4 và khi chia cho 9 dư 6?
C) nếu số dư là 18 thì số tự nhiên đó có thể là số chính phương được không ?
một số tự nhiên chia cho 36 có dư
A) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 18 ?
B) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 4 và khi chia cho 9 dư 6?
C) nếu số dư là 18 thì số tự nhiên đó có thể là số chính phương được không ?
một số tự nhiên chia cho 36 có dư
A) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 18 ?
B) giá trị số dư là bao nhiêu để số tự nhiên đó chia hết cho 4 và khi chia cho 9 dư 6?
C) nếu số dư là 18 thì số tự nhiên đó có thể là số chính phương được không ?
Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
Chứng minh rằng:
a) n và n5 có chữ số tận cùng giống nhau với n là số tự nhiên.
b) n2 luôn luôn chia cho 3 dư 1 với n không chia hết cho 3 và n là số tự nhiên.
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Nếu n là một số tự nhiên không chia hết cho 3 thì số dư của n2 khi chia cho 3 là bao nhiêu ???
Các bạn nhớ ghi cách giải giúp tớ nhé !!!!
xin lỗi mình vội
mình chỉ có thể nói là ra 1
xin lỗi nha
mih chỉ nói là ra 1 thôi
mong bạn thông cảm
nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là