Cho tam giác ABC, AB=AC, M thuộc BC, MD vuông góc AB(D thuộc AB), ME vuông góc AC ( E thuộc AC), BH vuông góc AC ( H thuộc AC). Chứng minh: MD+ME=BH
Cho tam giác ABC cân tại A,điểm M thuộc cạnh BC,kẻ MD vuông góc với AB(D thuộc AB),kẻ ME vuông góc với AC(E thuộc ÁC),kẻ BH vuông góc với AC(H thuộc AC).Chứng Minh MD+ME=BH.
ha ha ha ha ha ha ha ha ha ha ha
tam giác ABC cân ở A, M thuộc BC, kẻ MD vuông góc với AB (D thuộc AB) Kẻ ME vuông góc với AC (E thuộc AC) Kẻ BH vuông góc với AC, H thuộc AC. C/M: MD+ME=BH
tam giác ABC cân ở A, M thuộc BC, kẻ MD vuông góc với AB (D thuộc AB) Kẻ ME vuông góc với AC (E thuộc AC) Kẻ BH vuông góc với AC, H thuộc AC. C/M: MD+ME=BH
Cho tam giác ABC cân tại A. Điểm M thuộc cạnh BC. Kẻ MD vuông góc với AB (D thuộc AB). Kẻ ME vuông góc với AC (E thuộc AC). Kẻ BH vuông góc với AC (H thuộc AC). CM: MD + MẸ = BH
Cho tam giác ABC cân tại A, Điểm M thuộc cạnh BC. Kẻ MD vuông góc AB(D thộc AB), kẻ MEvuông góc AC(e thuộc AC), Kẻ BH vuông góc AC(H thuộc AC). C/m MD+ME=BH
cho tam giác ABC cân tại A M thuộc BC kẻ MD vuông góc với AB (D thuộc BC) kẻ MD vuông góc với AB (D thuộc AB ) kẻ ME vuông góc với AC(E thuộc AC) kẻ BH vuông góc với AC(H thuoc AC)
cho tam giác ABC cân tại A , M thuộc BC , MD vuông góc với AB (D thuộc BC ) ,ME vuông góc với AC (E thuộc AC), BH vuông góc với AC (H thuộc AC).CM AH=AK
Cho tam giác ABC cân tại A, có góc A nhọn. Lấy M là 1 điểm thuộc BC. Kẻ MD, ME lần lượt vuông góc với AB, AC ( D thuộc AB, E thộc AC) và kẻ BH vuông góc AC ( H thuộc AC), MK vuông góc với BH (K thuộc BH).
a) Chứng minh: Tam giác BKM = tam giác MDB.
b) CM: Tam giác KHM = tam giác EHM.
c) CM:MD+ME=BH.
Cho tam giác abc cân tại a, điểm m thuộc cạnh bc. Kẻ md vuông góc ab (d thuộc ab) kẻ me vuông góc ac, kẻ bh vuông góc ac. Cmr md + me =bh
AI GIÚP MÌNH VỚI MAI MÌNH PHẢI NỘP BÀI RỒI
Tự vẽ nhé
Từ A ta kẻ BI vuông góc với ME,cắt ME tại I.Dễ dàng chứng minh được tam giác BHI bằng tam giác EIH nên BH = EI
Mà EI = ME + MI.Vậy để chứng minh MD+ME=BH ta chỉ cần chứng minh MI=MD
Do BI vuông góc EI,EI vuông góc với AC nên BI song song AC
Vậy\(\widehat{IBC}=\widehat{ACB}\)hai góc so le trong
Do tam giác ABC cân tại A nên \(\widehat{ABC}\)= \(\widehat{ACB}\)Suy ra: \(\widehat{IBC}=\widehat{ABC}\)
Xét tam giác BMD và tam giác BMI:
Có BM chung:
\(\widehat{IBC}=\widehat{ABC}\)
\(\widehat{D}=\widehat{I}\)= \(90\)độ
Vậy tam giác BMD=BMI ch.gn
Suy ra: IM=MD. Vậy ta có điều phải chứng minh